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Abstract—Vehicular Ad-Hoc networks depend on clear com-
munication between vehicles using radio frequency in order to
operate effectively. Interference from existing technologies using
the RF spectrum, e.g. IoT devices, UAV, mobile systems, calls
into question the feasibility of future VANET systems without
an ability to cut through the noise. One approach to overcome
interference is to use waveform design to provide this capability.
Regrettably, most traditional algorithms are too computationally
complex to perform efficiently in real-time. In this paper, we
present early work on NeuroWav: a neural network based
approach to waveform design to combat the effects of interference
at low latency. NeuroWav is low size, weight, and power, executes
10X faster than the fastest extant waveform design algorithms,
and provides performance results comparable with a high fidelity
waveform design algorithm. Simulation results are provided that
corroborate the theoretical expectations.

I. INTRODUCTION

The future of autonomous driving is dependent on resilient
and reliable network technologies [6], [8]. Vehicular Ad-
Hoc networks (VANETs) are particularly sensitive to interfer-
ence [3], [12]. Saturation of the radio frequency (RF) spectrum
by IoT systems, aerial systems, mobile devices, and other
technologies [1], [4], [5], [16] leaves limited spectrum for
new systems [18]. It is most important to these systems to
improve signal-to-interference-plus-noise ratio (SINR) while
considering additional practical concerns, such as modulus,
range sidelobes, algorithm convergence rate, etc.

Researchers have created waveform design techniques that
increase SINR in saturated RF [2], [19], [20]. Waveform
design methods, e.g. cognitive radio, exist to sense the environ-
ment and change the waveform based on sensed interference
to increase the SINR in saturated RF. One technique, spectral
notching, places notches within a waveform allowing signal
to avoid spectral interference while remaining at a constant
modulus, and without affecting signal reliability [13], [17].

Neural networks have much potential for waveform design
problems. Neural networks could be used to classify input
waveforms to general cases which correspond to precomputed
output waveforms. A sufficiently small neural network may be
capable of classifying an input waveform to its corresponding
notched output at considerably lower latency than extant wave-
form design algorithms. While neural networks are known for
their high latency, many neural network implementations are
capable of real-time inference [14], [15].

Fig. 1: VANETs in congested/dynamic RF environments.

The goal of this paper is to present an early solution to
cognitive waveform design using neural networks. We present
our neural network approach to waveform design, NeuroWav,
which is capable of classifying input waveforms at high
accuracy in real-time on conventional compute hardware (i.e.
under 10ms).

Section 2 of this paper presents the spectral notching
problem and design of NeuroWav. Section 3 discusses the
implementation of NeuroWav. Section 4 covers early results of
NeuroWav using generated waveform data. Section 5 discusses
future work and conclusions.

II. PROBLEM FORMULATION

Two algorithms used to generate spectral notched wave-
forms are the Error Reduction Algorithm (ERA) [7] and
the Re-Iterative Uniform Weight Optimization algorithm
(RUWO) [9]. ERA uses an iterative approach to design
waveforms with spectral notches from inputs and has a fast
convergence rate (10’s ms with CPU). RUWO uses either a
deterministic model of interference or empirical interference
data to construct spectral notches, providing better spectral
nulling quality at a much higher convergence time. Despite
the effectiveness of these techniques, algorithms like ERA and
RUWO are too high latency to merit use in real-time, low size,
weigh, and power (SWaP) systems. The objective of this initial
work is to achieve or improve upon the convergence rate of
the ERA, with similar waveform characteristics/performance.

2019 IEEE Vehicular Networking Conference (VNC)

U.S. Government work not protected by U.S. copyrightAuthorized licensed use limited to: The Ohio State University. Downloaded on March 27,2022 at 16:02:39 UTC from IEEE Xplore.  Restrictions apply. 



Input Layer

Hidden Layer

...

Output Layer

...

...
Fig. 2: Data Generation and NeuroWav process. a) Example data is generated and displayed in the Fourier domain. b) Waveform
is transformed into a binary mask. c) Select points on the binary mask are provided as input to the neural network. d) Neural
network predicts the class of our waveform.

A. Transmit and Interference Signal Model

Given the continuous time, pulsed waveform, s, whose
envelope is constant non-zero over t ∈ [0, T ] for duration T

s(t) = α(t) exp{j(2πfct+ φ(t))} (1)

where α is pulse envelope, fc carrier frequency and φ the
phase, we desire to design the waveform to avoid interfer-
ence while maintaining ||α||22 = 1. We critically sample the
baseband waveform to express in complex-valued vector form,
s ∈ CM×1, as

s = α� exp{jφ}. (2)

The interference (scenario depicted in figure 1) is mod-
eled simply as a noise corrupted linear frequency modulated
(LFM) signal for ease of use (a more realistic interference
models from prior work could be applied [11]). The dig-
itized interference and noise can be described by defining
n = [0, 1, 2...(M − 1)] as the vector of samples M within
the signal, and f s the sampling frequency, ts = n/f s, the time
sample vector, thus the interference Λ is defined in discrete
form as:

Λ(ts, f 0, B, T ) = exp{j2π(f 0ts +
B

2Ti
ts

2)}+ n (3)

where f 0 is the initial frequency, B the bandwidth, and Ti the
duration of the LFM sweep, equal to the simulation extant,
see related work [10] for an example.

For a digitally sampled interference environment with
Fourier transform, I = F(Λ), we threshold |I| > γ, where
γ is a tunable parameter for desired SINR. Following the
basic thresholding, a binary mapping of each Fourier bin is
expressed where 0 represents a usable bin and 1 represents in-
terference signal present and thus unsuitable for transmission.
This process generates the binary mask depicted in figure 2.

B. Example Data Generation

Our dataset includes 93 waveforms with unique notch loca-
tions generated from the RUWO algorithm (the same wave-
forms were generated from the ERA algorithm for comparison
purposes). Each waveform is then modified with independent
identically distributed complex Gaussian noise n = CN(0, σ2

l )
where l determines the variance from set σ2 = [0 : 2 : 20]

and 100 draws from each provide a total of 93000 waveforms
for training and classification. The varying noise values are
analyzed for robustness to the SINR.

Additional pre-processing is necessary. Briefly, before data
is input into the network, relevant features must be extracted.
Feature extraction includes converting our observed interfer-
ence signal to a binary mask, where values of 1 represent
samples where signal strength exceeds a given threshold.
This process is completely deterministic for a finite number
of Fourier bins, and one can make additional reasonable
assumptions such as minimum signal width and maximum
number of signals in practical scenarios. This further limits
the possible cases to study.

Our networks training set consists of sampled feature points
from our binary mask waveforms. For each neuron in our
input layer, feature points from our binary mask are selected
as input to the network at even intervals, spanning the mask.
As seen in figure 2, feature points extracted from the binary
mask include the first and last points in the mask, along
with evenly spaced samples in between. This sampling-based
process, given enough feature points, allows NeuroWav to
gain sufficient information about our waveform to classify
it without having to take as input the entire waveform. This
process allows NeuroWav to remain low SWaP and low latency
while maintaining high accuracy.

C. Pitfalls and Assumptions

NeuroWav has assumptions aside from those previously
stated. The threshold used to create the binary mask is crucial.
Too high or low a threshold will return a highly noisy mask
that is difficult to classify. For our dataset, our threshold is
fixed at 30 dBm. Additional processing time may be required
to dynamically determine thresholds for problem domains that
necessitate it.

Our problem contains 93 output classes. For a problem with
a higher order of output classes, a larger network may be nec-
essary, which may increase latency. Despite this, NeuroWav’s
early implementation leaves room for speedup improvements
in both implementation environment and low power hardware
acceleration discussed in Section 5.
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III. NEURAL NETWORK APPROACH

Our early NeuroWav approach uses a neural network to
match input waveforms with appropriate notched outputs gen-
erated by RUWO.

Figure 2 describes our neural network architecture. We
use a feed forward artificial neural network with a variable
number of input nodes which take in waveform features, as
well as a variable number of hidden units. Both the number of
inputs and hidden units in our network are hyper-parameters.
Inputs are gathered from our thresholded waveform dataset
as integers. For each node in the input layer, we input the
integer position of a sample in our input waveform binary
mask. Samples are selected at even intervals along the binary
mask as shown in Figure 2. Each input label corresponds to a
waveform type. They are provided to the network as integers;
one for each of the 93 possible classes.

Our neural network was implemented in Matlab version
2019a using the deep learning toolbox. Our network is im-
plemented as a feed forward multi-layer perceptron with an
input layer of variable nodes, 1 hidden layer of variable nodes,
and one single neuron output layer. Our hidden layer uses the
sigmoid activation function. The training procedure relies on
the Levenberg-Marquardt optimizer for error backpropagation.
Our network trains on 80% of our 93000 waveforms for 1000
epochs. 10% of our waveforms are reserved for validation, and
the final 10% are reserved for testing.

Our network has a series of hyper-parameters, most im-
portant being the number of both input nodes and hidden
units. We also have to consider the environmental factors of
SINR and latency in analyzing the performance of our network
compared to other waveform design techniques. In section 4,
we analyze the interactions between these hyper-parameters
and environmental factors in detail as they compare to our
networks performance against ERA and RUWO.

IV. RESULTS

In this section, we display some of the more relevant anal-
ysis for typical VANET operations. In summary, we observe
improved performance in convergence rate while achieving the
prescribed performance of the traditional ERA and RUWO
approaches.

A. Convergence Rate

In figure 3, we present the convergence rates distributions
in seconds of the 3 approaches: NeuroWav trained using 15
sample points and 50 hidden units, ERA with a convergence
parameter value of 10−3 and RUWO. Latencies were captured
using a Lenovo ThinkpadTM T470 laptop running Ubuntu
18.04 with an I7 7500u processor and 24GB of RAM.

RUWO has the slowest convergence rate, with a mean of
18 seconds, which is far too high for real-time applications.
ERA with a small epsilon averages 90ms, but produces inferior
results to RUWO. NeuroWav produces precomputed RUWO
results in 7ms on average. Notably, this is 1 order of magnitude
faster than ERA at the same task, and 3-4 magnitudes faster
than RUWO.

Fig. 3: Distribution of Convergence Time

B. Spectral Null Depth

As first discussed in prior work [10] for a pulsed application,
a waveform cannot entirely eliminate the energy contained
within the stopband region(s). However, the depth of the nulled
region may be sufficient if the energy within the stopband does
not significantly interfere with the other users. Here, the null
quality metric ∆nd is defined as as the ratio of the average
power contained within the nulled region to the passband
region as

∆nd =
n(Ωpb)

n(Ωsb)

∑
i∈Ωsb

|sf,i|2∑
k∈Ωpb

|sf,k|2
(4)

where Ωpb and Ωsb are the sets containing the Fourier bin
indices 0, . . . ,M − 1 corresponding to the passband and
stopband regions of the spectrum. The n(•) operation returns
the size of the set. In table I we report the mean statistic for
each of the three signal design algorithms null quality. We
note that NeuroWav and RUWO have the same null quality
despite NeuroWav’s decreased latency.

TABLE I: Average Spectral Null Depth

Algorithm Null Quality
ERA 18.5 dB

RUWO 27.8 dB
NeuroWav 27.8 dB

C. SINR vs Accuracy

The SINR of our input signals is an important metric to
consider when determining accuracy and the feasibility of
NeuroWav operating in real world systems. SINR is defined
as follows:

SINR =
||s||22
sHKs

(5)

where K is the interference and noise covariance matrix.
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Fig. 4: SINR in dB versus classification accuracy.

VANETs operate in highly dynamic conditions and must be
sensitive to low SINR signals to operate correctly. Perfectly
clear signals can by no means be assumed. In figure 4, it can
be seen that NeuroWav is adept at classifying inputs even at
very low SINR.

We present results for NeuroWav trained at 3 different
hyper-parameter configurations to demonstrate our SINR re-
silience. Our samples differ in the number of sample points
(SP) they intake, and in the number of hidden units (HU)
each network has. Our simplest setting (2SP, 5HU) takes
the least time to execute, but has the lowest SINR/Accuracy
ratio. At 0dB SINR, our network achieves an accuracy of
75.81%. As SINR increases, our network converges to 100%
accuracy, reaching 100% at 4dB SINR. Adding hidden units
(2SP, 10HU) improves accuracy but slightly increases training
and inference time. By increasing sample points (5SP, 5HU),
we are able to increase accuracy to 100% even at 0dB
SINR. While increasing sample points increases training and
inference time, NeuroWav still meets real-time constraints
with upwards of 50 hidden units and 15 sample points as
demonstrated in Figure 3.

V. CONCLUSIONS & FUTURE WORK

NeuroWav is an early approach to real-time waveform
design that has serious implications for VANETs. VANETs
capable of real-time waveform design will be able to cut
through the RF noise of city environments, facilitating quick
connections to cloud systems and other vehicles. To implement
large scale vehicular autonomy policies, this capability is a
must. NeuroWav uses a novel feature extraction approach
to classify input waveforms with deep spectral notches in
under 10ms on conventional hardware. Using this technique,
VANETs and other RF systems can take better advantage of
the RF band to cut through our saturated airspace.

NeuroWav is an early approach to this problem. Future
work will focus on pushing NeuroWav towards designing
waveforms from scratch using recurrent and spiking networks
in real-time. To meet real-time constraints as well as remain
low SWaP, research into low power neuromorphic hardware
accelerators will be crucial.
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