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Abstract: Precision agriculture uses tools and technologies to monitor and manage in-field soil and
crop variability by dividing a crop field into multiple management zones. This approach helps to
implement site-specific management practices which can improve crop productivity and profitability
of farming operations while minimizing the environmental impacts from agricultural fields. However,
large crop fields may comprise many zones, and thus the cost of collecting data and modeling crop
health for each zone may not result in higher return on technology investments. While the use of
unmanned aerial systems (UAS) can facilitate timely and cost-effective collection of crop and soil
health data compared to human-based scouting approach, UAS performance can be limited due
to battery life. To collect exhaustive data from a large crop field, human operators are required to
exchange depleted batteries many times, which can be costly and time consuming. In this study, we
developed a novel fully autonomous aerial scouting approach, the whole-field based reinforcement
learning algorithm, that uses reinforcement learning (RL) and convolutional neural networks to
choose sample sections of a field for sensing to predict crop health for an entire crop field. This
approach minimizes data collection while maximizing the accuracy for predictions of an entire field.
The performance of this approach is compared with prior work focused on a local-field based RL
algorithm, and conventional aerial scouting approaches in terms of accuracy, modeling cost, and
potential overall cost saving. To develop and test the approach, we ran flight simulations on an aerial
image data set. The aerial images were collected from an 80-acre corn field and divided into 40,320
management zones (each zone is around 4.3 square meters), and used the Excess Green Vegetation
Index as proxy for crop health condition. The novel scouting approach modeled crop health with
89.8% accuracy, reduced labor cost by 4.8X and increased agricultural profits by 1.36X compared to the
conventional scouting approach which exhaustively scouts the entire field with a higher redundancy
data collection scheme.

Keywords: convolutional neural networks; reinforcement learning; unmanned aerial systems (UAS);
autonomous aerial scouting

1. Introduction

There is currently an unprecedented demand to increase food and energy production, and a desire
for sustainability. This demand is accompanied by increased water scarcity and weather variability. It
is predicted that the global population will increase to 9.7 billion in 2050 [1,2], and that agricultural
production must double to meet the needs of this growing population and shift in dietary preference
while balancing against energy and water constraints [3,4]. This goal cannot be reached by simply
doubling the agricultural inputs because of constrained resources, already developed agricultural land
limits, and environmental concerns [5]. The future efficiency gains of agricultural production systems
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must be radically improved and adaptable to be able to increase yields with respect to large variances
expected in weather locally and growing globally.

Precision agriculture (aka site-specific management practice) is a promising step towards
improving efficiency and reducing adverse impacts of agricultural production [6]. It focuses on
assessing variation across and within crop fields to divide a field into multiple management zones
and treats each management zone accordingly [7,8]. Thus, it is critical to have spatial and temporal
maps of crop and soil health on a timely fashion [9]. Accurate crop and soil health maps are critical to
support site-specific management practices in a cost-effective manner. Management decisions based
on inaccurate crop and soil health maps can result in unwanted crop yield loss, excessive fertilizer
application, and increased nutrient loads to waterbodies [10]. For instance, let’s assume that a farmer
applies fertilizers to only those crops that fall within the unhealthy zones, based on crop health maps.
If crop health maps inaccurately label unhealthy areas as healthy, those misrepresented unhealthy
sections of a field would not receive treatment, and thus crop yield of those areas could be poor.
Alternatively, if healthy zones are mislabeled as unhealthy, they would receive unwanted fertilizer
application, which mean loss of farm resources as well as increased risk of nutrient runoffs and leaching
without much increase in crop yield.

Accurate representation of field conditions via maps depends on temporal and spatial resolutions
of data, which vary across sensors and platforms (e.g., satellite, weather stations, and aircraft) used for
data collection, which in turn influence data collection and processing costs [11]. UAS have emerged
as a cost-effective approach for aerial scouting [12]. Compared to satellites, UAS can fly to waypoints,
hover, and collect high resolution data (millimeters per pixel) from large areas quickly with no or little
risk. Compared to human piloted aircraft, UAS are 3X less expensive, achieve better spatial resolution,
and pose fewer safety risks [11]. Traditional UAS-based approach for scouting of a field involves a
grid mission, which captures images from multiple areas (hereinafter defined as zones) [12-14]. To be
more specific, for scouting a whole field, a UAS is given a set of waypoints (i.e., GPS coordinates) to
follow and it takes one picture at each waypoint. Various vegetation indices, such as Excess Green
Vegetation Index (ExG) [15], are computed to indicate crop health conditions for each zone [16]. In
order to provide accurate crop health information of a field, traditional exhaustive scouting approach
involves redundant data collection (i.e., 65-80% front and side overlap between images), which results
in massive computation costs. In the meantime, batteries on commodity UAS allow just 15-25 minutes
of flight. UAS must land and recharge repeatedly to cover large fields. Human operators must monitor
flights and battery capacity, swap and recharge batteries and possibly fly aircraft manually by remote
control. These activities also delay missions. It can take a full 8-hours workday to exhaustively collect
high definition images from every zone in an 80-acre crop field [11,17]. Thus, for UAS with onboard
IoT systems, it is crucial to collect as much information as possible within a time frame. Autonomous
systems sense and potentially alter their environment without human intervention. Instead, they
manage IoT actuators (e.g., UAS flight controls) to achieve high utility (e.g., low prediction error).
Fully or partially autonomous tractors, planters and monitoring equipment already perform complex
tasks in critical settings today. While autonomy can reduce labor costs, standardize and improve
tasks, it also loses robust human problem-solving ability, incurs engineering costs and makes it hard to
model compute needs (closed-loop systems). Lin et al. relied on narrowly defined tasks to trace and
model compute needs for autonomous cars [18]. Boubin et al. broadened Lin’s compute modeling by
capturing environmental factors for UAS [17]. In-situ Al [19] and Boroujerdian et al. [13] generalized
these approaches via environmental simulation.

In this project, we show that with the help of RL [20] and spatial ensembles of convolutional
neural network (CNN) [21], UAS can get accurate crop health maps and reduce flight time and costs
by scouting only a fraction of a field. Specifically, we design a whole-field based fully autonomous
aerial scouting system for UAS, an alternative to exhaustive scouting where the UAS (1) are piloted
by software we designed, (2) can generate an accurate crop health map with only partial coverage of
the field and (3) can autonomously set their flight paths to maximize the accuracy of the crop health
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map. The latter feature distinguishes our approach from random sampling. In this work, we attempt
to answer the following questions: (1) can UAS autonomously select and fly over 20% to 40% of a field’s
management zones and create accurate crop health maps? (2) Can precision agriculture translate such cost
savings in data collection as profit?

The rest of the paper is arranged as follows: Section 2 states the design steps of the whole-field
RL approach including implemented CNN and RL algorithm as well as the experiment environment.
Section 3 provides the results of whole-field RL and compares it with results of local-field RL and
some traditional scouting methods. Section 4 discusses the limitations and future work followed by a
conclusion of the research in section 5.

2. Methods

2.1. Design

To reduce data collection and computation costs, we present a new RL approach, whole-field RL,
to guide UAS in aerial crop scouting, and compare the differences in crop health maps generated by
these approaches with traditional methods as well as our previous work, local-field RL [11]. Since
the traditional approach involves exhaustive scouting of a field, it is assumed that the crop health
information based on this approach is 100% accurate, and thus used as ground truth data to evaluate
findings based on two RL approaches (Figure 1).

Crop Health Conditions

B Heaithy [l Unhealthy [l Predicted Bl Predicted
Healthy Unhealthy

Figure 1. (a) Exhaustive scouting of a field wherein UAS visits all zones in a grid fashion and crop
conditions are classified as healthy and unhealthy, and (b) RL based fully autonomous aerial scouting
wherein UAS visits over a fraction of a field (e.g., 8 areas) and predict crop conditions for unvisited
areas.

Whole-field RL uses a full history of images captured by a UAS during a scouting mission and
implements complex CNN models and a RL algorithm to extrapolate a whole-field crop health map
from sensed data. That is, during a flight mission, whole-field RL method uses all images (one image
per zone) of previous UAS-visited zones as inputs to CNN models to construct crop health prediction
maps which serve as inputs to the RL algorithm to decide the next zone to fly over. It is, however,
a computationally intensive approach (discussed in detail in section 2.2). In contrast, local-field RL
only uses one image from the last UAS-visited zone to predict its next path. After sampling enough
points, whole-field RL then extrapolates crop health information for a whole field. Compared to the
traditional approach, which uses a predefined path for exhaustive data collection, both RL based
scouting approaches visit less areas within a field and thus reduce data collection costs. For example,
as shown in Table 1 and Figure 1, since UAS batteries drain at the same rate, exhaustive scouting
incurs the cost of landing, recharging and flying back to its most recent zone. Exhaustive scouting
takes two flights to scout all 25 zones while fully autonomous aerial scouting only takes one flight.
However, these approaches can introduce error as health conditions of the zones that are not directly
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observed are predicted. Thus, our work also focused on minimizing prediction errors as well as finding
a balance between prediction error and UAS coverage rate of the field.

Table 1. The benefits of the fully autonomous aerial scouting captured by empirical traces of battery

drain.
Step 0 1 5 9 13 17 21 25

Exhaustive Battery % 100 | 95 75 55 35 85 65 45
Scouting Mission % 0 4 20 36 52 68 84 100

Current Zone [e,0] | [a,0] | [d1] | [c2] | [b3] | [e4] | [a4]
Fully Step 0 1 5 9 10
Autonomous Battery % 100 | 95 75 55 50
Aerial Mission % 0 10 50 90 100
Scouting Current Zone [e,0] | [d,3] | [c4] | [dA4]

Figure 2 outlines fully autonomous aerial scouting approach. First, UAS fly over management
zones and collect images. Crop health is computed for each visited zone. Prior observations of crop
health data for all visited zones, associated flight actions and their outcomes are stored as training data.
Then, this RL algorithm computes the next flight action, wherein prior action and observation pairs
predict future utility. That is, given extant crop health data, this RL algorithm computes mean utility
of similar prior observations and chooses the best action. Here, utility gained after taking an action is
defined as the improvement in crop health map accuracy. For autonomous aerial scouting, the utility
function seeks to maximize accuracy of the final extrapolated crop health map.

Compute Update
crop health  F== map

Capture )
image Local-field

> @ RL approach

Crop health
prediction
algorithm y

Take flight action E @ =

\ v
Reinforcement ‘ | -

Choose learning Whole-field || @ .
flight action RL approach b

005

Crop Health Conditions

M Healthy M Unhealthy # Predicted M Predicted
Healthy Unhealthy

Figure 2. Fully autonomous aerial crop scouting uses RL to decide flight actions and covers only a
fraction of the field.

2.2. The Whole-Field RL Algorithm

The whole-field RL approach has three components - 1) a CNN to model crop health, 2) an
algorithm to extrapolate crop health predictions over a whole field, and 3) a RL approach to improve
future outputs. As an overview, CNN used spatial information of ExG to improve crop health
prediction accuracy in areas scouted by UAS. The algorithm then expands predictions beyond spatial
neighbors. Then, RL chooses flight paths that wisely sample zones to maximize the accuracy of
predicted crop health maps (details provided later in this section). Finally, when desired coverage is
reached, CNN-based crop health predictions are used to extrapolate all data sensed by the UAS to
create a whole-field crop health map. It was assumed that UAS have access to edge computing systems
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powerful enough for RL and CNN inference. Edge servers or laptops could sufficiently augment
compute available on UAS. Wireless networks could allow data transfer between UAS and compute
devices, but this is outside the scope of this paper.

2.2.1. Convolutional Neural Network to Model Crop Health

Based on the first law of geography, things that are closer together tend to be more related than
things that are far apart, and this is often evident while monitoring agricultural fields [16,22]. For
instance, the root causes of poor crop health, such as diseases and pests, often spread to nearby
crops. We leveraged this property to extrapolate crop health given nearby ground truth. This can be
accomplished by providing surrounding zones as the input to a CNN that predicts crop health for a
targeted zone.

We chose and modified vggl6 [21] neural network as our CNN model to predict crop health
conditions. Our design trained CNN models, one for each of the eight neighbors adjacent to the center
management zone in a 3x3 grid. Crop health is computed directly in zones visited by the UAS by using
vegetation indices [16]. Given the location of a nearby observation, the corresponding one of these
CNN models predicts crop health given the observed image of that zone. These models are designed to
leverage the spatial crop health distribution property to predict the condition of the management zones
not visited by the UAS. This approach makes a few key assumptions. First, each image captured by
UAS represents one management zone. Second, since the UAS captures images in flight, management
zones must be connected in the field. This assumption can be problematic in urban settings but reflects
common practice in rural environments. Also, as a corollary, the UAS visit a connected subset of all
the management zones in the whole field, which we define as the visible (or observed) area.

Management zone status
" | search area . Empty area

Figure 3. Crop health map prediction using CNN.

As an illustration, eight observed surrounding management zones represent eight positions
regarding the unobserved middle one, which serves as inputs to the eight spatial CNN models
(Figure 3a). Models were trained by using the feature of the observed surrounding management
zone with the label (health condition) of the unobserved middle one. In this case, each of the eight
images on the surrounding has a corresponding CNN model that can be used to predict the crop
health at position [b,2]. Thus, by using CNN, crop health for all the zones adjacent to the visible area
are modeled. These zones are called the search area (as shown in green in Figure 3b). We defined a
prediction window as a UAS-centered square area in a field (Figure 3b, a 5x5 prediction window). The
prediction window is conducted with three parts of the area. The rest of the prediction window forms
the empty area. Management zones in the search area may have multiple adjacent visible zones. In this
event, predictions from multiple adjacent CNN models will be used to improve accuracy, an approach
akin to ensemble models (illustrated in Figure 3c for zone [b,2]). The ensemble leads to an accurate
prediction because one CNN model predicted poor health (0.89), where a label of 1.0 represents an
unhealthy zone, and the others predict good health (0.03 and 0.24). The average of these values reflects
the crop health for [b,2].
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2.2.2. Crop Health Prediction Algorithm

A two-stage crop health prediction algorithm was designed to extrapolate crop health information
beyond the search area to reach out to the empty area and create crop health maps on a whole-field
scale (Figure 4). For every flight step, the algorithm predicts the health conditions of all management
zones within the prediction window given ground truth data sensed along the UAS flight path in it.
Only zones within this region are predicted in lieu of all zones in the field, which saves on compute
time and improves accuracy. This map serves as the input for RL to make the best decision for the next
flight direction. After the mission completes, the crop health prediction algorithm generates a crop
health map for the whole crop field.

Update
Window

iy

Map
Filling
Visible Algorithm
zones

(a)

A

Zone

Finding [d3] Spatial

Neural
Networks

|

Healthy
B Unhealthy

M Predicted
Healthy

M Predicted
Unhealthy

(b)

Figure 4. Crop health map prediction using CNN.

First, the algorithm initiates a prediction window with a chosen size (Figure 4a). The initial
window only contains the sensed data of all zones on the flight path (visible area). Next, the CNN
models are used to predict the health conditions of zones in the search area. To improve prediction
accuracy, zones in search area are prioritized based on the number of visible zones they have in their
neighborhood. After the prediction for a given zone are obtained, the crop health map will be updated
by not only adding the health prediction, but also adding a replacement image at that position to
expand the visible area. That visible image is found using a reference data set based on the prediction
of that zone from CNN models.

In this study, 2% of all UAS images were used to build a reference data set. The reference data
set leverages the feature that the texture of a crop field is similar throughout, which means you can
potentially find two zones that are quite similar given enough samples. Every zone image in this data
set was already associated with a health prediction from the CNN, which saved time by not needing to
load CNN models to make predictions during a flight mission. After we get the prediction of a zone in
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the search area, we compare it to all the predictions in the reference data set. The reference image with
the closest prediction is chosen and placed in that location in the map. In this way the process keeps
filling the crop health map with visible images which makes it possible to predict all zones that are not
originally adjacent to the visible area. After we update the crop health map with the prediction and
the visible image for that management zone, the visible area and the search area are updated as well.
The visible area expands as reference data set images replace blank spaces in the prediction window.
The search area then removes resolved management zones and adds their neighbors from the area that
is not adjacent to visible area. After this round of updates completes, the process continues to find
the management zone in the search area with the highest priority. The algorithm completes when the
prediction window contains no blank management zones.

2.2.3. Reinforcement Learning Algorithm

Once crop health conditions are evaluated, RL algorithms, modified Q-learning, are used to
determine the next UAS movement direction. UAS are designed to maintain one map for every
flight step while exploring a crop field. Each map is one state of the field that uses two kinds of
information, collected crop health conditions (aerial images on the flight path) as the ground truth
data and predicted crop health generated by the crop health prediction algorithm. This data is used to
develop a state model which provides a series of possible flight directions from the current zone. The
final flight decision will be made by the state model using a list of prior observations of similar field
states. In order to build a dataset with plenty of field states, we developed an algorithm to randomly
simulate flight path and collect map data (detailed in section 2.4.3).

The model was trained with a data set of 73,000 unique field state combinations. The K-Nearest
Neighbors (KNN) [23] algorithm was used to determine which prior examples are most relevant for a
given combination of ground truth and prediction maps. KNN determines the 11 most similar prior
states to the current state. To determine the final movement direction, RL compares predicted labels for
each flight action from KNN to CNN predictions. The flight action with the largest distance between
its KNN and CNN prediction (i.e., highest error) is chosen to ensure that UAS explore the locations
that they least understand.

2.3. Local-Field RL Algorithm

Local-Field RL is similar in many ways to whole-field RL. Both algorithms use RL to navigate the
field and generate a final crop health map. There are, however, a series of important differences between
them. Unlike whole-field RL which uses a prediction map generated from the crop health prediction
algorithm as an input to RL, local-field RL extracts image properties (i.e., ExG, RGB saturation) from
visible zones and feeds such data as an input to RL. Once the UAS has covered a certain amount
of the field, local-field RL extrapolates the crop health map of a field using a KNN-based recursive
dilation procedure instead of relying on a CNN. The dilation procedure finds every management zone
in the map that has not been predicted or observed and assigns that zone the consensus of its directly
adjacent neighbors, if it has any. If it has no neighbors, the position remains unassigned. This process
is performed recursively until the entire map is full.

2.4. Implementing Autonomous Aerial Scouting

Autonomous scouting algorithms were implemented using the SoftwarePilot simulation
environment [24], which has been used in prior work to implement and simulate local-field RL
simulation [11,17]. In this study, SoftwarePilot was modified to use CNN-based model outputs for
crop health map prediction as well as for RL-based path finding algorithms. This simulator performs
both the local-field and whole-field RL algorithms until a user-specified amount of the crop field is
explored, then uses the extrapolation algorithms to predict any areas of the final map that are still

empty.
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2.4.1. Data Set

CNN training and flight simulation were performed on a data set collected in the Molly Caren
Research farm near London, Ohio in August 2017. This data set includes UAS-collected images of
corn fields covering 950,000 individual management zones in 684 aerial images. Images were collected
at 200 feet from the ground using an eBee UAS from senseFly with a ground sample distance of 1.9
cm/px. For this paper, we used 30 out of 684 aerial images conducting of 40,320 zones as our training
data set.

2.4.2. Whole-Field RL Implementation

CNN-based crop health modeling is used in two parts of the experiment. First, we need to use the
crop health prediction models to build data sets for the RL algorithms. Second, during simulation, the
crop health prediction models provide near real-time predicted crop health map for each management
zone the UAS captures and for the whole field based on the final flight path. In this subsection we
mainly discuss RL data set construction. The extrapolation procedure is discussed in the following
subsection.

In order to build a large RL data set and perform thorough analysis, data sets were prepared
using 6 coverage rates - 10%, 20%, 30%, 40%, 50%, and 60%. For each coverage rate, five whole-field
RL prediction window sizes - 7x7, 11x11, 15x15, 19x19, 23x23 were used. For each combination, 1000
flight paths were randomly generated. The process begins with choosing a random start point for the
UAS on the edge of the field. Each subsequent flight step is chosen randomly from the neighboring
management zones of the current position. The simulated flight path keeps growing until it meets
the specified coverage rate. If the UAS has sampled all its directly adjacent neighbors, but has not
reached the coverage threshold, it flies to the nearest unsampled management zone. For each zone
image the UAS collects, the crop health map for the prediction window is calculated using the crop
health prediction algorithm. Crop health is estimated based on ExG [16], a vegetation index derived
using visible aerial image; this data is also used as ground truth. ExG of each management zone is
compared with the average ExG of the entire field. If ExG is less than 80% of average field ExG, the
management zones are classified as unhealthy, and if ExG is at least 80% of average ExG, zones are
defined as healthy.

2.4.3. Simulation Environment

Our simulation environment was modified from the SoftwarePilot, the local-field RL simulator.
To test our whole-field RL approach, we used 30 images from all collected aerial images to crop into
individual management zones. Each image is broken into a set of 1344 management zones in a 42x32
management zone grid for a total of 40,320 management zones. For the purpose of simulation, we
consider one of these images to represent the flight area of the fully autonomous aerial scouting system,
and for each management zone to represent sensed data from the simulated UAS. The ground truth
ExG of each zone is calculated and provided to the simulated UAS’s visible set and used to calculate
the accuracy of the resultant crop health maps.

2.5. Non-Autonomous Scouting Approach

Other than the exhaustive aerial scouting approach as shown in Figure 1a, we also compared
our fully autonomous aerial scouting with two naive approaches: random scouting and non-scouting.
Random scouting entails UAS randomly choosing flight directions until the provided coverage rate
is reached. Non-scouting refers to the naive approach of applying fertilizers uniformly without
considering internal field variability.
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2.6. Comparison Between Scouting Approach

We compared whole-field RL scouting approach with local-field RL approach and some traditional
methods (the exhaustive, random walk, and non-scouting approaches) based on metrics such as
accuracy, positive precision, positive recall, negative precision, and negative recall (discussed below)
relative to the ground truth health determined using ExG. Positive and negative indicate healthy
and unhealthy crop conditions, respectively. Positive recall represents the ratio between all correctly
classified true positives, and all true positives (both true positives and false negatives), where a higher
ratio represents efficient avoidance of false negatives. Negative precision similarly represents the ratio
of correctly classified true negatives to all true negatives (classified true negatives and classified false
positives), where a high negative precision represents an efficient avoidance of false positives. While
false positives refer to unhealthy management zones that are misclassified as healthy, false negatives
refer to healthy management zones that are misclassified as unhealthy. True positives and negatives
indicate management zones that are correctly classified as healthy and unhealthy management zones.
Management decisions based on false positives can result in untreated crops, which may result in low
crop yield. Similarly, if unhealthy management zones are predicted as healthy (i.e., false negative),
they could lead to excessive use of resources such as fertilizer thereby increasing the likelihood of
higher nutrient load to air or water.

For the fully autonomous scouting approaches, we used two coverage rates, 20% and 40%. And
for each experiment, we executed both algorithms across the 40,320 management zone crop data set.
These performance metrics were calculated using the SoftwarePilot energy models for the DJI Mavic
Pro which has a 3830mAh, 11.4v battery. We profiled the execution time of local-field and whole-field
RL using a Lenovo ThinkPad T470 as the edge system. This system has an i7-7500u processor, and
24GB of RAM, and runs Ubuntu 18.04.

2.6.1. Energy and labor costs estimation

In order to compare the performance of all approaches from energy and cost perspectives, a simple
cost-benefit model was developed by adding up revenue based on crop yield from all the management
zones and subtracting the cost of treating misclassified zones (healthy classified as unhealthy and vice
versa) as well as UAS deployment costs. The labor costs were considered to be $10 and $20/hour
for unskilled and skilled workers, respectively [25]. It was also assumed that autonomous scouting
approaches require only one unskilled worker to complete the entire survey, whereas exhaustive
scouting requires an additional skilled worker (i.e., two in total) to plan and complete UAS surveys
including setting up the system, planning the routes, and swapping UAS batteries. In non-scouting
approach, it was assumed that farmers classify every zone as unhealthy and thus treat the field equally.

2.6.2. Nutrient Runoff Risk

We estimated potential risk of nutrient runoffs under various scouting approaches with two
assumptions - 1) farmers tend to apply fertilizer uniformly throughout a field if they don’t have site
specific information from scouting (i.e., non-scouting), and thus the nutrient runoff risk of a field is
100%, and 2) if they have site specific information (i.e., various types of scouting), they apply treatments
only to poor (i.e., unhealthy) sections of a field, which reduces the nutrient runoff risk. Thus, the
potential of autonomous scouting approaches to reduce nutrient runoff risks is dependent directly on
the false negative rates from the classification as unnecessary nutrient runoffs can occur when healthy
zones are unnecessarily fertilized. To determine how these two autonomous scouting approaches help
minimize nutrient runoff risk, we estimated the percentage of healthy zones that are unnecessarily
fertilized.
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3. Results and Discussion

In this study, the accuracy, scouting cost, revenue, and energy consumption of the proposed fully
autonomous scouting techniques were assessed and compared with state of the practice automated
scouting and non-scouting approaches used in both precision agriculture and general agriculture.

3.1. Comparing fully autonomous aerial scouting and conventional methods

Accuracy differences between whole-field and local-field RL at both 20% and 40% coverage
settings showed that whole-field RL at 20% coverage rate provides 2.3% better accuracy than local-field
RL at 40% coverage rate (Figure 5). Local-field RL provided 74.5% and 80.3% accuracy at 20% and
40% coverage, respectively. This is compared to 82.6% and 87.3% accuracy at 20% and 40% coverage,
respectively, for whole-field RL.

Accuracy Positive Positive Negative [ Negative
100% — Precision  Recall Precision Recall
80% —
60% —
40% . . : :
Local-field RL Local-field RL Whole-field RL Whole-field RL
20% coverage 40% coverage 20% coverage 40% coverage

Figure 5. Accuracy of maps generated by autonomous scouting at different coverage rates.

Local-field RL outperformed whole-field RL considerably at avoiding false negatives. It
experienced 8.3% and 8% higher positive recall than that of whole-field RL at 20% and 40% coverage,
respectively. However, there was 67% increase in negative recall for whole-field RL over local-field RL
at 20% coverage, and 58% at 40% coverage.

Table 2. Accuracy, precision, and recall for maps generated using whole-field and local-field RL at
different coverage rates.

Coverage Rate 10% | 20% | 30% | 40% | 50% | 60%
Accuracy 073 | 075 | 0.77 | 0.80 | 0.84 | 0.88

Local Positi‘\{e Precision 0.69 | 069 | 0.72 | 0.75 | 0.79 | 0.83
Field RL Positive Recall 0.89 | 091 | 093 | 0.94 | 095 | 097
Negative Precision | 049 | 0.57 | 0.64 | 0.72 | 0.78 | 0.85

Negative Recall 048 | 046 | 046 | 051 | 0.59 | 0.61

Accuracy 0.70 | 0.83 | 0.85 | 0.87 | 0.89 | 0.90

Whole Positi‘\{e Precision 0.71 | 0.83 | 0.85 | 0.87 | 0.89 | 0.89
Field RL Positive Recall 071 | 0.84 | 0.87 | 0.89 | 093 | 0.94
Negative Precision | 0.64 | 0.78 | 0.81 | 0.82 | 0.85 | 0.87

Negative Recall 0.65 | 0.77 | 0.80 | 0.81 | 0.83 | 0.83

When comparing two autonomous scouting methods for coverage rates of 10% to 60%, whole-field
RL outperformed local-field RL considerably between 20% and 50% coverage while local-field RL
outperformed whole-field RL at 10% coverage with a higher positive precision rate and less false
positives (Table 2). At 10% coverage, local-field RL classified nearly the entire field as healthy
compared to whole-field RL. At 60% coverage, there was a small difference in overall accuracy between
whole-field and local-field RL; however, negative recall was significantly higher in whole-field RL.
While local-field RL experienced consistent accuracy gains as coverage improves, whole-field RL
experienced gains at lower coverage, with a considerable drop-off at 50%; its performance is restricted
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by our CNNs, whose average accuracy is around 90%. This suggests that the marginal benefit of
increasing whole-field RL coverage past 60% is likely not worth the marginal cost of labor and
equipment. For over 60% coverage rate, the extra cost is more than the extra revenue comparing to a
40% coverage rate.

The main difference between the two autonomous scouting approaches is how they consider
surrounding zones for prediction of crop health and pathfinding. Whole-field RL uses a CNN-based
prediction window for path finding, in which a few poor management zones can reinforce the scouting
of UAS for poor management zones in their surroundings. Local-field RL simply uses KNN-based
linear approach, which predicts health condition of a management zone based on its adjacent neighbors,
and thus, can achieve high positive recall. While it’s important to achieve high positive recall, negative
recall can have significant cost implications when using this data for implementing site-specific
management practices. Treating an unhealthy zone as healthy (negative recall) is estimated to cost 8
times higher than treating a healthy zone as unhealthy (positive recall) (discussed in section 2.6).

3.2. Autonomous Pathfinding and Extrapolation Comparison

Both autonomous scouting approaches appear to alternate between two natural behaviors,
exploration and scouting. Exploration involves the UAS traversing the field, covering large swaths
in search of a region that contradicts current map conditions. Scouting involves the UAS moving in
an exhaustive fashion across a region that the RL algorithm perceives as important. Whole-field RL
was found to take better advantage of these two pathfinding behaviors by quickly finding areas that it
perceives to be problematic, and more thoroughly scouting those areas. This contrasts with local-field
RL approach where the first cluster is traversed but barely explored and a large chunk of the second
cluster is ignored (Figure 6a). These discrepancies are likely due to the quality of the inputs provided
to the RL algorithm in each approach. Whole-field RL provides its entire prediction and ground truth
windows which more accurately locate relevant prior examples in the data set collected beforehand
than the local features used in local-field RL.

Local-field RL
20% coverage

Local-field RL
40% coverage

' Ground truth health \ ' Ground truth health \ =t

Original Image @ Whole-field RL Original Image (b) Whole-field RL
40% coverage 20% coverage

|| True Positive ] True Negative [l False Positive [T False Negative == Zogf-ggtstfd = ng'ggﬁ:d

Figure 6. Whole-field and local-field RL beget different paths. [Note: A subset of UAS imagery was
used to better illustrate the difference in flight paths taken by local-field and whole-field RL approaches
along with resultant crop health maps at 20% and 40% coverage. The final predicted crop health
maps were evaluated in four colors, representing true positive, true negative, false positive, and false
negative, respectively.]

However, local-field RL outperformed whole-field RL in some cases at a low coverage rate
(Figure 6b). Distracted by traces of tractors, whole-field RL spends a considerable amount of time
scouting a questionable narrow area in the top left of the field, while local-field RL rushes to the bottom
to explore a region that is partially negative or unhealthy. While whole-field RL eventually finds the
bounds of the large negative cluster, the quick decision by local-field RL that leads to finding the bad
cluster earlier leads to improved accuracy at this low coverage setting.
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Differences between the local-field and whole-field RL extrapolation methods are also apparent
when examining the four output maps. Both local-field RL maps show significant clusters of false
negatives (pink areas). This is due to the underlying KNN-based extrapolation algorithm. When
local-field RL's extrapolation algorithm encounters a cluster of similarly classified points, it tends to
reinforce that classification across nearby unpredicted zones. One cluster of negative zones would
be easily extrapolated such that a huge area of a field could be falsely predicted as negative (details
shown in predicted crop health map by local-field RL in Figure 6a). This behavior is not as apparent in
whole-field RL which uses online predictions to fill zones instead of binary extrapolation.

3.3. Autonomous Scouting on Fields with Various Crop Health Conditions

The performance of whole-field RL was explored on two very different regions, one which is
primarily comprised of healthy zones, and another primarily comprised of unhealthy zones (Figure 7).
In the first image, crop density was lower in portions of the field where areas appeared to be compacted
by agricultural machinery. Other portions appeared to be low elevation areas, where crops emergence
was impacted by prolonged saturation of water (i.e., ponding). In contrast, the second image showed
a healthy corn field where lush green corn rows can be seen, separated only slightly by intermittent

gaps.

== Unhealthy sample
1001~ == Healthy sample

801
60

40+

Accuracy (%)

20+

20 40 Unhealthy sample Healthy sample

Coverage (%)
Figure 7. Accuracy of whole-field RL at 20% and 40% coverage rates for largely healthy and largely
unhealthy samples.

Whole-field RL achieved over 90% accuracy for both coverage rates in the healthy sample. The
accuracy increased over the average accuracy of the total data set is due largely to the uniformity of
the healthy image, which indicates that whole-field RL can accurately extrapolate from a set of entirely
healthy management zones. However, the size of the reference set impacts accuracy. Sometimes
unknown healthy images can be replaced with unhealthy images due to their similarity in comparison
to the rest of the reference set, which keeps whole-field RL from achieving 100% accuracy on sample
healthy image at both coverage rates. Doubling coverage only improved accuracy by 3.2% for the
healthy image. In contrast, doubling coverage for the unhealthy image improved accuracy by 10.3%
(Figure 7).

The uniformity of the healthy image limits the accuracy gains from increasing coverage, which
simply decreases the prevalence of false negatives generated erroneously by the reference set. Increased
coverage in the non-uniform unhealthy image allows the system to get a better understanding of the
topology of negative clusters to improve extrapolation. The importance of high coverage is apparent
for predominantly unhealthy fields, but the low net accuracy must also be explained. Whole-field RL is
largely negative-biased as discussed previously. When confronted with a majority negative image, the
extrapolation procedure will reinforce negative regions, resulting in a larger number of false negatives
than we see in, for instance, the health image in Figure 7. While whole-field RL experiences decreased
overall accuracy on predominantly negative fields due to a high false negative rate, the decreased cost
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of treating false negatives as compared to false positives discussed earlier in this section implies only
modest losses from treatment costs as compared to crop loss from such incorrectly predicted zones.

3.4. Effects of Prediction Window Size

Coverage (%) —e— 10 20
30 == 40

-
o
o

©
o

Pathfinding Inference Extrapolation

Whole-field RL 1.75 0.6 81.77
T\v/—_’\’ Local-field RL 0.5 N/A 0.25
T T T T 1
=7 11x11  15x15 19x19 23x23 Component execution time (s)
Window size

(a) (b)

Figure 8. (a) the effects of prediction window size on final crop health map accuracy at different

Accuracy (%)
©
o

~
o

60

coverage rates for whole-field RL, (b) the execution times of software components for local-field RL
and whole-field RL with a window size of 15. [Note: Crop health map was generated offline.]

While comparing different combinations of prediction window sizes and coverage rates on
accuracy, it was found that increasing prediction window size is not always beneficial (Figure 8a).
For 20% to 40% coverage rate, accuracy is highest for the 15x15 window size, with lower accuracy
proportional to both increases and decreases of the window size. 10% coverage rate had the highest
accuracy at a window size of 19. Accuracy decreases at smaller window sizes can be attributed to a
lack of iteratively updated prediction information with which to generate a final map. As the UAS
moves around the field, it iteratively updates unseen but nearby areas to the flight path. If this window
does not extend out far enough from the flight path, the only update that some areas will receive
is the final extrapolation. At smaller window sizes, it is clear that some areas could have benefited
from iterative updates, which would in turn increase accuracy. The opposite can be said for accuracy
decreases with increased window size. If the prediction window is too large, the CNN approach may
not be able to accurately predict their health due to their distance from ground truth. This result is
critical to performance. Given the quadratic increase in latency as the prediction window increases, it
is imperative that a whole-field RL system balances accuracy against increased costs due to latency.
Given that we have found accuracy’s inflection point as a function of window size, a simple solution
could be to use the most accurate window size, which we have done for these experiments.

It is worth noting that as prediction window size increases, so does the size of the RL data set
required for pathfinding. Both the increased number of predictions and larger pathfinding overhead
increase system latency, so larger windows should be avoided to increase throughput unless accuracy
returns justify them. The process to compute the final crop health map at the edge system offline
by extrapolation after a mission is complete took on average 320X longer for whole-field RL than
for local-field RL (Figure 7b). Whole-field RL’'s CNN models required considerably more time due
to computational complexities than local-field RL’s KNN-based approach. This process is, however,
performed offline. Latencies simply determine how long the farmer must wait after mission execution
to receive a crop health map. While whole-field RL experiences much higher latency in crop health
map generation, both approaches return a map to the farmer in reasonable time.

3.5. Energy, Labor Costs and Nutrient Runoff Risk

The amount of charges required to map a hectare of crops differs between three scouting
approaches due to the percent of field area covered in each approach (Figure 9a). Since it was
assumed that the same amount of charges will be required to cover same size of a field across all
scouting approaches, local-field and whole-field RL experienced the same charges at the same coverage
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setting, requiring 6 charges at 20% coverage rate and 12 charges at 40% coverage rate. This compares
to 29 charges to map one hectare of land using the traditional exhaustive scouting method which was
found to require considerably more labor and charges to complete the scouting mission.

I Labor cost per hectare ($) [ Total revenue per hectare ($)
300 I Charges per hectare 30 1000~
750
2001 20
500-
100+ 10
250
_O 0_
local local  whole whole exhaustive whole whole local local ‘%, S
field field field field  scouting field field field field Oo(/ Oé,}) 'Sbo @(/& ‘900
20% 40% 20% 40% 20% 40% 20% 40% %, (//;;) ”'LQ (’%0
©

(a) (b)

Figure 9. (a) Energy implementations and labor costs of autonomous scouting vs. exhaustive scouting,
(b) the impacts that autonomous scouting have on revenue compared to state of the practice methods.

There were significant differences in labor costs for different scouting approaches (Figure 9a).
Considering the economic data from the 2018 growing season [25], at hourly rates of $10 and $20 for
unskilled and skilled workers respectively, autonomous scouting methods were roughly estimated
to cost $29 and $44 for 20% and 40% coverage of an 80-acre crop field, which compares to the $212
mapping cost for exhaustive mapping using two labors.

According to recently published agricultural cost data [25], the revenue per acre for corn is $763.8
USD ($3.8/bushel * 200 bushels/acre). Revenue per management zone is calculated to be $0.8 for
the size of 4.3 square meters per zone. The cost of fertilizer per acre is $130, which makes it $0.1 per
management zone. Thus, one false negative management zone would cost a farmer $0.8 due to crop
loss, while one false positive management zone would cost $0.1 in treatment cost. Based on this, when
the field is not scouted, it is estimated to provide 36% less revenue than whole-field RL, and 27% less
revenue than local-field RL (Figure 9b). Exhaustive scouting outperformed no scouting method by
20% but loses out to local-field and whole-field RL by 5% and 17% respectively. While exhaustive
scouting will provide 100% accuracy, allowing farmers to properly treat their entire field, the labor
costs of exhaustively mapping large fields is outweighed by lower coverage autonomous mapping
with extrapolation. We also explored the effects of a random sampling approach at 40% coverage
using local-field RL. This automated approach without RL pathfinding underperforms compared to
exhaustive by 1.2%, demonstrating that not all automated and naive autonomous approaches are
superior.

Between autonomous approaches at 40% coverage, we found that whole-field RL garnered
13% more revenue than local-field RL. Despite similar labor costs, the accuracy improvements over
local-field RL, particularly among the negative recall, provides a considerable increase in revenue for
whole-field RL over local-field RL. By limiting false negatives, whole-field RL was found to reduce
higher runoff risk by 12% compared to local-field RL. However, all the revenue data are generated
from our simulation environment, which means that they are under the best case scenarios without
considering other important factors such as climate, weather, market and insects.

4. Limitations and Future Work

Autonomous scouting methods inherently avoid surveying 100% of a field to save time, energy,
and money. This, however, runs the risk of missing critical field health problems. This problem can be
minimized if a field is regularly monitored for potential crop health problems during growing seasons.
A problematic section of a field that might not have been picked up by autonomous scouting at one
time is likely to be picked up if the field is regularly mapped.
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The cost-benefit model used in this study considers fertilizer application as the only treatment
for unhealthy zones. Zones may have stresses such as pest and water other than nutrients only, and
thus need to be treated accordingly, which could in turn influence the treatment costs. Also, costs and
benefits were estimated based on corn only. Some of these estimates can differ by crop and treatment
types. Thus, future studies should be focused on evaluating some of these factors.

In the study, we used ExG as an indicator of crop health for simplicity. There are however other
vegetation indices (e.g., NDVI, green index) and biophysical variables (e.g., soil organic carbon, pH,
elevation) that are also reported to be good indicators of crop health [26]. Future studies could exploit
a combination of these variables as indicators of crop health while developing models for autonomous
scouting approaches.

Future work should also focus on training, reinforcement learning, and testing of the models
based on data sets with a variety of crops collected from separate fields in separate conditions. The
RL approaches used in this study, g-learning algorithm, can also be compared with other related
sampling algorithms such as rapidly-exploring random trees. Similarly, future work should address
how prediction window size and its effect on architectural latency affects overall cost and performance
considering its effect on accuracy.

5. Conclusion

In this study we design and discuss a new fully autonomous aerial scouting approach, whole-field
RL, as compared to local-field RL approach and the current naive UAS approach of exhaustive
scouting. The performance of these two RL approaches along with other popular scouting methods
were assessed in terms of accuracy, precision, recall, and execution time of crop health maps, and
cost-saving potential across different field coverage ranging between 10% to 60% of the total field
area. Compared to local-field RL, whole-field RL can boost accuracy of crop health maps by 9%. This
approach produces accurate crop health maps after flying over only 40% of the field. Whole-field RL
reduced labor cost by 4.8 times, increased agricultural profits by 36% and reduced runoff potential
by 87%. We found that coverage rate offers diminishing improvements in accuracy after 40%. The
considerable improvement in performance of whole-field scouting over local-field scouting can largely
be attributed to its added CNN models to use surrounding ground truth data to predict health
condition of management zones in flight. In-flight predictions allow the final crop health map to be
iteratively updated and refined in flight, producing a more accurate final product. Our evaluation
shows that fully autonomous aerial scouting can guide crop field management techniques that use less
money, less agricultural product and achieve greater monetary return than the state of the practice.
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