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Abstract: Precision agriculture uses tools and technologies to monitor and manage in-field soil and1

crop variability by dividing a crop field into multiple management zones. This approach helps to2

implement site-specific management practices which can improve crop productivity and profitability3

of farming operations while minimizing the environmental impacts from agricultural fields. However,4

large crop fields may comprise many zones, and thus the cost of collecting data and modeling crop5

health for each zone may not result in higher return on technology investments. While the use of6

unmanned aerial systems (UAS) can facilitate timely and cost-effective collection of crop and soil7

health data compared to human-based scouting approach, UAS performance can be limited due8

to battery life. To collect exhaustive data from a large crop field, human operators are required to9

exchange depleted batteries many times, which can be costly and time consuming. In this study, we10

developed a novel fully autonomous aerial scouting approach, the whole-field based reinforcement11

learning algorithm, that uses reinforcement learning (RL) and convolutional neural networks to12

choose sample sections of a field for sensing to predict crop health for an entire crop field. This13

approach minimizes data collection while maximizing the accuracy for predictions of an entire field.14

The performance of this approach is compared with prior work focused on a local-field based RL15

algorithm, and conventional aerial scouting approaches in terms of accuracy, modeling cost, and16

potential overall cost saving. To develop and test the approach, we ran flight simulations on an aerial17

image data set. The aerial images were collected from an 80-acre corn field and divided into 40,32018

management zones (each zone is around 4.3 square meters), and used the Excess Green Vegetation19

Index as proxy for crop health condition. The novel scouting approach modeled crop health with20

89.8% accuracy, reduced labor cost by 4.8X and increased agricultural profits by 1.36X compared to the21

conventional scouting approach which exhaustively scouts the entire field with a higher redundancy22

data collection scheme.23

Keywords: convolutional neural networks; reinforcement learning; unmanned aerial systems (UAS);24

autonomous aerial scouting25

1. Introduction26

There is currently an unprecedented demand to increase food and energy production, and a desire27

for sustainability. This demand is accompanied by increased water scarcity and weather variability. It28

is predicted that the global population will increase to 9.7 billion in 2050 [1,2], and that agricultural29

production must double to meet the needs of this growing population and shift in dietary preference30

while balancing against energy and water constraints [3,4]. This goal cannot be reached by simply31

doubling the agricultural inputs because of constrained resources, already developed agricultural land32

limits, and environmental concerns [5]. The future efficiency gains of agricultural production systems33
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must be radically improved and adaptable to be able to increase yields with respect to large variances34

expected in weather locally and growing globally.35

Precision agriculture (aka site-specific management practice) is a promising step towards36

improving efficiency and reducing adverse impacts of agricultural production [6]. It focuses on37

assessing variation across and within crop fields to divide a field into multiple management zones38

and treats each management zone accordingly [7,8]. Thus, it is critical to have spatial and temporal39

maps of crop and soil health on a timely fashion [9]. Accurate crop and soil health maps are critical to40

support site-specific management practices in a cost-effective manner. Management decisions based41

on inaccurate crop and soil health maps can result in unwanted crop yield loss, excessive fertilizer42

application, and increased nutrient loads to waterbodies [10]. For instance, let’s assume that a farmer43

applies fertilizers to only those crops that fall within the unhealthy zones, based on crop health maps.44

If crop health maps inaccurately label unhealthy areas as healthy, those misrepresented unhealthy45

sections of a field would not receive treatment, and thus crop yield of those areas could be poor.46

Alternatively, if healthy zones are mislabeled as unhealthy, they would receive unwanted fertilizer47

application, which mean loss of farm resources as well as increased risk of nutrient runoffs and leaching48

without much increase in crop yield.49

Accurate representation of field conditions via maps depends on temporal and spatial resolutions50

of data, which vary across sensors and platforms (e.g., satellite, weather stations, and aircraft) used for51

data collection, which in turn influence data collection and processing costs [11]. UAS have emerged52

as a cost-effective approach for aerial scouting [12]. Compared to satellites, UAS can fly to waypoints,53

hover, and collect high resolution data (millimeters per pixel) from large areas quickly with no or little54

risk. Compared to human piloted aircraft, UAS are 3X less expensive, achieve better spatial resolution,55

and pose fewer safety risks [11]. Traditional UAS-based approach for scouting of a field involves a56

grid mission, which captures images from multiple areas (hereinafter defined as zones) [12–14]. To be57

more specific, for scouting a whole field, a UAS is given a set of waypoints (i.e., GPS coordinates) to58

follow and it takes one picture at each waypoint. Various vegetation indices, such as Excess Green59

Vegetation Index (ExG) [15], are computed to indicate crop health conditions for each zone [16]. In60

order to provide accurate crop health information of a field, traditional exhaustive scouting approach61

involves redundant data collection (i.e., 65-80% front and side overlap between images), which results62

in massive computation costs. In the meantime, batteries on commodity UAS allow just 15–25 minutes63

of flight. UAS must land and recharge repeatedly to cover large fields. Human operators must monitor64

flights and battery capacity, swap and recharge batteries and possibly fly aircraft manually by remote65

control. These activities also delay missions. It can take a full 8-hours workday to exhaustively collect66

high definition images from every zone in an 80-acre crop field [11,17]. Thus, for UAS with onboard67

IoT systems, it is crucial to collect as much information as possible within a time frame. Autonomous68

systems sense and potentially alter their environment without human intervention. Instead, they69

manage IoT actuators (e.g., UAS flight controls) to achieve high utility (e.g., low prediction error).70

Fully or partially autonomous tractors, planters and monitoring equipment already perform complex71

tasks in critical settings today. While autonomy can reduce labor costs, standardize and improve72

tasks, it also loses robust human problem-solving ability, incurs engineering costs and makes it hard to73

model compute needs (closed-loop systems). Lin et al. relied on narrowly defined tasks to trace and74

model compute needs for autonomous cars [18]. Boubin et al. broadened Lin’s compute modeling by75

capturing environmental factors for UAS [17]. In-situ AI [19] and Boroujerdian et al. [13] generalized76

these approaches via environmental simulation.77

In this project, we show that with the help of RL [20] and spatial ensembles of convolutional78

neural network (CNN) [21], UAS can get accurate crop health maps and reduce flight time and costs79

by scouting only a fraction of a field. Specifically, we design a whole-field based fully autonomous80

aerial scouting system for UAS, an alternative to exhaustive scouting where the UAS (1) are piloted81

by software we designed, (2) can generate an accurate crop health map with only partial coverage of82

the field and (3) can autonomously set their flight paths to maximize the accuracy of the crop health83
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map. The latter feature distinguishes our approach from random sampling. In this work, we attempt84

to answer the following questions: (1) can UAS autonomously select and fly over 20% to 40% of a field’s85

management zones and create accurate crop health maps? (2) Can precision agriculture translate such cost86

savings in data collection as profit?87

The rest of the paper is arranged as follows: Section 2 states the design steps of the whole-field88

RL approach including implemented CNN and RL algorithm as well as the experiment environment.89

Section 3 provides the results of whole-field RL and compares it with results of local-field RL and90

some traditional scouting methods. Section 4 discusses the limitations and future work followed by a91

conclusion of the research in section 5.92

2. Methods93

2.1. Design94

To reduce data collection and computation costs, we present a new RL approach, whole-field RL,95

to guide UAS in aerial crop scouting, and compare the differences in crop health maps generated by96

these approaches with traditional methods as well as our previous work, local-field RL [11]. Since97

the traditional approach involves exhaustive scouting of a field, it is assumed that the crop health98

information based on this approach is 100% accurate, and thus used as ground truth data to evaluate99

findings based on two RL approaches (Figure 1).100

Figure 1. (a) Exhaustive scouting of a field wherein UAS visits all zones in a grid fashion and crop
conditions are classified as healthy and unhealthy, and (b) RL based fully autonomous aerial scouting
wherein UAS visits over a fraction of a field (e.g., 8 areas) and predict crop conditions for unvisited
areas.

Whole-field RL uses a full history of images captured by a UAS during a scouting mission and101

implements complex CNN models and a RL algorithm to extrapolate a whole-field crop health map102

from sensed data. That is, during a flight mission, whole-field RL method uses all images (one image103

per zone) of previous UAS-visited zones as inputs to CNN models to construct crop health prediction104

maps which serve as inputs to the RL algorithm to decide the next zone to fly over. It is, however,105

a computationally intensive approach (discussed in detail in section 2.2). In contrast, local-field RL106

only uses one image from the last UAS-visited zone to predict its next path. After sampling enough107

points, whole-field RL then extrapolates crop health information for a whole field. Compared to the108

traditional approach, which uses a predefined path for exhaustive data collection, both RL based109

scouting approaches visit less areas within a field and thus reduce data collection costs. For example,110

as shown in Table 1 and Figure 1, since UAS batteries drain at the same rate, exhaustive scouting111

incurs the cost of landing, recharging and flying back to its most recent zone. Exhaustive scouting112

takes two flights to scout all 25 zones while fully autonomous aerial scouting only takes one flight.113

However, these approaches can introduce error as health conditions of the zones that are not directly114
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observed are predicted. Thus, our work also focused on minimizing prediction errors as well as finding115

a balance between prediction error and UAS coverage rate of the field.116

Table 1. The benefits of the fully autonomous aerial scouting captured by empirical traces of battery
drain.

Exhaustive
Scouting

Step 0 1 5 9 13 17 21 25
Battery % 100 95 75 55 35 85 65 45
Mission % 0 4 20 36 52 68 84 100

Current Zone [e,0] [a,0] [d,1] [c,2] [b,3] [e,4] [a,4]
Fully
Autonomous
Aerial
Scouting

Step 0 1 5 9 10
Battery % 100 95 75 55 50
Mission % 0 10 50 90 100

Current Zone [e,0] [d,3] [c,4] [d,4]

Figure 2 outlines fully autonomous aerial scouting approach. First, UAS fly over management117

zones and collect images. Crop health is computed for each visited zone. Prior observations of crop118

health data for all visited zones, associated flight actions and their outcomes are stored as training data.119

Then, this RL algorithm computes the next flight action, wherein prior action and observation pairs120

predict future utility. That is, given extant crop health data, this RL algorithm computes mean utility121

of similar prior observations and chooses the best action. Here, utility gained after taking an action is122

defined as the improvement in crop health map accuracy. For autonomous aerial scouting, the utility123

function seeks to maximize accuracy of the final extrapolated crop health map.124

Figure 2. Fully autonomous aerial crop scouting uses RL to decide flight actions and covers only a
fraction of the field.

2.2. The Whole-Field RL Algorithm125

The whole-field RL approach has three components - 1) a CNN to model crop health, 2) an126

algorithm to extrapolate crop health predictions over a whole field, and 3) a RL approach to improve127

future outputs. As an overview, CNN used spatial information of ExG to improve crop health128

prediction accuracy in areas scouted by UAS. The algorithm then expands predictions beyond spatial129

neighbors. Then, RL chooses flight paths that wisely sample zones to maximize the accuracy of130

predicted crop health maps (details provided later in this section). Finally, when desired coverage is131

reached, CNN-based crop health predictions are used to extrapolate all data sensed by the UAS to132

create a whole-field crop health map. It was assumed that UAS have access to edge computing systems133
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powerful enough for RL and CNN inference. Edge servers or laptops could sufficiently augment134

compute available on UAS. Wireless networks could allow data transfer between UAS and compute135

devices, but this is outside the scope of this paper.136

2.2.1. Convolutional Neural Network to Model Crop Health137

Based on the first law of geography, things that are closer together tend to be more related than138

things that are far apart, and this is often evident while monitoring agricultural fields [16,22]. For139

instance, the root causes of poor crop health, such as diseases and pests, often spread to nearby140

crops. We leveraged this property to extrapolate crop health given nearby ground truth. This can be141

accomplished by providing surrounding zones as the input to a CNN that predicts crop health for a142

targeted zone.143

We chose and modified vgg16 [21] neural network as our CNN model to predict crop health144

conditions. Our design trained CNN models, one for each of the eight neighbors adjacent to the center145

management zone in a 3x3 grid. Crop health is computed directly in zones visited by the UAS by using146

vegetation indices [16]. Given the location of a nearby observation, the corresponding one of these147

CNN models predicts crop health given the observed image of that zone. These models are designed to148

leverage the spatial crop health distribution property to predict the condition of the management zones149

not visited by the UAS. This approach makes a few key assumptions. First, each image captured by150

UAS represents one management zone. Second, since the UAS captures images in flight, management151

zones must be connected in the field. This assumption can be problematic in urban settings but reflects152

common practice in rural environments. Also, as a corollary, the UAS visit a connected subset of all153

the management zones in the whole field, which we define as the visible (or observed) area.154

Figure 3. Crop health map prediction using CNN.

As an illustration, eight observed surrounding management zones represent eight positions155

regarding the unobserved middle one, which serves as inputs to the eight spatial CNN models156

(Figure 3a). Models were trained by using the feature of the observed surrounding management157

zone with the label (health condition) of the unobserved middle one. In this case, each of the eight158

images on the surrounding has a corresponding CNN model that can be used to predict the crop159

health at position [b,2]. Thus, by using CNN, crop health for all the zones adjacent to the visible area160

are modeled. These zones are called the search area (as shown in green in Figure 3b). We defined a161

prediction window as a UAS-centered square area in a field (Figure 3b, a 5x5 prediction window). The162

prediction window is conducted with three parts of the area. The rest of the prediction window forms163

the empty area. Management zones in the search area may have multiple adjacent visible zones. In this164

event, predictions from multiple adjacent CNN models will be used to improve accuracy, an approach165

akin to ensemble models (illustrated in Figure 3c for zone [b,2]). The ensemble leads to an accurate166

prediction because one CNN model predicted poor health (0.89), where a label of 1.0 represents an167

unhealthy zone, and the others predict good health (0.03 and 0.24). The average of these values reflects168

the crop health for [b,2].169
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2.2.2. Crop Health Prediction Algorithm170

A two-stage crop health prediction algorithm was designed to extrapolate crop health information171

beyond the search area to reach out to the empty area and create crop health maps on a whole-field172

scale (Figure 4). For every flight step, the algorithm predicts the health conditions of all management173

zones within the prediction window given ground truth data sensed along the UAS flight path in it.174

Only zones within this region are predicted in lieu of all zones in the field, which saves on compute175

time and improves accuracy. This map serves as the input for RL to make the best decision for the next176

flight direction. After the mission completes, the crop health prediction algorithm generates a crop177

health map for the whole crop field.178

Figure 4. Crop health map prediction using CNN.

First, the algorithm initiates a prediction window with a chosen size (Figure 4a). The initial179

window only contains the sensed data of all zones on the flight path (visible area). Next, the CNN180

models are used to predict the health conditions of zones in the search area. To improve prediction181

accuracy, zones in search area are prioritized based on the number of visible zones they have in their182

neighborhood. After the prediction for a given zone are obtained, the crop health map will be updated183

by not only adding the health prediction, but also adding a replacement image at that position to184

expand the visible area. That visible image is found using a reference data set based on the prediction185

of that zone from CNN models.186

In this study, 2% of all UAS images were used to build a reference data set. The reference data187

set leverages the feature that the texture of a crop field is similar throughout, which means you can188

potentially find two zones that are quite similar given enough samples. Every zone image in this data189

set was already associated with a health prediction from the CNN, which saved time by not needing to190

load CNN models to make predictions during a flight mission. After we get the prediction of a zone in191
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the search area, we compare it to all the predictions in the reference data set. The reference image with192

the closest prediction is chosen and placed in that location in the map. In this way the process keeps193

filling the crop health map with visible images which makes it possible to predict all zones that are not194

originally adjacent to the visible area. After we update the crop health map with the prediction and195

the visible image for that management zone, the visible area and the search area are updated as well.196

The visible area expands as reference data set images replace blank spaces in the prediction window.197

The search area then removes resolved management zones and adds their neighbors from the area that198

is not adjacent to visible area. After this round of updates completes, the process continues to find199

the management zone in the search area with the highest priority. The algorithm completes when the200

prediction window contains no blank management zones.201

2.2.3. Reinforcement Learning Algorithm202

Once crop health conditions are evaluated, RL algorithms, modified Q-learning, are used to203

determine the next UAS movement direction. UAS are designed to maintain one map for every204

flight step while exploring a crop field. Each map is one state of the field that uses two kinds of205

information, collected crop health conditions (aerial images on the flight path) as the ground truth206

data and predicted crop health generated by the crop health prediction algorithm. This data is used to207

develop a state model which provides a series of possible flight directions from the current zone. The208

final flight decision will be made by the state model using a list of prior observations of similar field209

states. In order to build a dataset with plenty of field states, we developed an algorithm to randomly210

simulate flight path and collect map data (detailed in section 2.4.3).211

The model was trained with a data set of 73,000 unique field state combinations. The K-Nearest212

Neighbors (KNN) [23] algorithm was used to determine which prior examples are most relevant for a213

given combination of ground truth and prediction maps. KNN determines the 11 most similar prior214

states to the current state. To determine the final movement direction, RL compares predicted labels for215

each flight action from KNN to CNN predictions. The flight action with the largest distance between216

its KNN and CNN prediction (i.e., highest error) is chosen to ensure that UAS explore the locations217

that they least understand.218

2.3. Local-Field RL Algorithm219

Local-Field RL is similar in many ways to whole-field RL. Both algorithms use RL to navigate the220

field and generate a final crop health map. There are, however, a series of important differences between221

them. Unlike whole-field RL which uses a prediction map generated from the crop health prediction222

algorithm as an input to RL, local-field RL extracts image properties (i.e., ExG, RGB saturation) from223

visible zones and feeds such data as an input to RL. Once the UAS has covered a certain amount224

of the field, local-field RL extrapolates the crop health map of a field using a KNN-based recursive225

dilation procedure instead of relying on a CNN. The dilation procedure finds every management zone226

in the map that has not been predicted or observed and assigns that zone the consensus of its directly227

adjacent neighbors, if it has any. If it has no neighbors, the position remains unassigned. This process228

is performed recursively until the entire map is full.229

2.4. Implementing Autonomous Aerial Scouting230

Autonomous scouting algorithms were implemented using the SoftwarePilot simulation231

environment [24], which has been used in prior work to implement and simulate local-field RL232

simulation [11,17]. In this study, SoftwarePilot was modified to use CNN-based model outputs for233

crop health map prediction as well as for RL-based path finding algorithms. This simulator performs234

both the local-field and whole-field RL algorithms until a user-specified amount of the crop field is235

explored, then uses the extrapolation algorithms to predict any areas of the final map that are still236

empty.237
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2.4.1. Data Set238

CNN training and flight simulation were performed on a data set collected in the Molly Caren239

Research farm near London, Ohio in August 2017. This data set includes UAS-collected images of240

corn fields covering 950,000 individual management zones in 684 aerial images. Images were collected241

at 200 feet from the ground using an eBee UAS from senseFly with a ground sample distance of 1.9242

cm/px. For this paper, we used 30 out of 684 aerial images conducting of 40,320 zones as our training243

data set.244

2.4.2. Whole-Field RL Implementation245

CNN-based crop health modeling is used in two parts of the experiment. First, we need to use the246

crop health prediction models to build data sets for the RL algorithms. Second, during simulation, the247

crop health prediction models provide near real-time predicted crop health map for each management248

zone the UAS captures and for the whole field based on the final flight path. In this subsection we249

mainly discuss RL data set construction. The extrapolation procedure is discussed in the following250

subsection.251

In order to build a large RL data set and perform thorough analysis, data sets were prepared252

using 6 coverage rates - 10%, 20%, 30%, 40%, 50%, and 60%. For each coverage rate, five whole-field253

RL prediction window sizes - 7x7, 11x11, 15x15, 19x19, 23x23 were used. For each combination, 1000254

flight paths were randomly generated. The process begins with choosing a random start point for the255

UAS on the edge of the field. Each subsequent flight step is chosen randomly from the neighboring256

management zones of the current position. The simulated flight path keeps growing until it meets257

the specified coverage rate. If the UAS has sampled all its directly adjacent neighbors, but has not258

reached the coverage threshold, it flies to the nearest unsampled management zone. For each zone259

image the UAS collects, the crop health map for the prediction window is calculated using the crop260

health prediction algorithm. Crop health is estimated based on ExG [16], a vegetation index derived261

using visible aerial image; this data is also used as ground truth. ExG of each management zone is262

compared with the average ExG of the entire field. If ExG is less than 80% of average field ExG, the263

management zones are classified as unhealthy, and if ExG is at least 80% of average ExG, zones are264

defined as healthy.265

2.4.3. Simulation Environment266

Our simulation environment was modified from the SoftwarePilot, the local-field RL simulator.267

To test our whole-field RL approach, we used 30 images from all collected aerial images to crop into268

individual management zones. Each image is broken into a set of 1344 management zones in a 42x32269

management zone grid for a total of 40,320 management zones. For the purpose of simulation, we270

consider one of these images to represent the flight area of the fully autonomous aerial scouting system,271

and for each management zone to represent sensed data from the simulated UAS. The ground truth272

ExG of each zone is calculated and provided to the simulated UAS’s visible set and used to calculate273

the accuracy of the resultant crop health maps.274

2.5. Non-Autonomous Scouting Approach275

Other than the exhaustive aerial scouting approach as shown in Figure 1a, we also compared276

our fully autonomous aerial scouting with two naive approaches: random scouting and non-scouting.277

Random scouting entails UAS randomly choosing flight directions until the provided coverage rate278

is reached. Non-scouting refers to the naive approach of applying fertilizers uniformly without279

considering internal field variability.280
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2.6. Comparison Between Scouting Approach281

We compared whole-field RL scouting approach with local-field RL approach and some traditional282

methods (the exhaustive, random walk, and non-scouting approaches) based on metrics such as283

accuracy, positive precision, positive recall, negative precision, and negative recall (discussed below)284

relative to the ground truth health determined using ExG. Positive and negative indicate healthy285

and unhealthy crop conditions, respectively. Positive recall represents the ratio between all correctly286

classified true positives, and all true positives (both true positives and false negatives), where a higher287

ratio represents efficient avoidance of false negatives. Negative precision similarly represents the ratio288

of correctly classified true negatives to all true negatives (classified true negatives and classified false289

positives), where a high negative precision represents an efficient avoidance of false positives. While290

false positives refer to unhealthy management zones that are misclassified as healthy, false negatives291

refer to healthy management zones that are misclassified as unhealthy. True positives and negatives292

indicate management zones that are correctly classified as healthy and unhealthy management zones.293

Management decisions based on false positives can result in untreated crops, which may result in low294

crop yield. Similarly, if unhealthy management zones are predicted as healthy (i.e., false negative),295

they could lead to excessive use of resources such as fertilizer thereby increasing the likelihood of296

higher nutrient load to air or water.297

For the fully autonomous scouting approaches, we used two coverage rates, 20% and 40%. And298

for each experiment, we executed both algorithms across the 40,320 management zone crop data set.299

These performance metrics were calculated using the SoftwarePilot energy models for the DJI Mavic300

Pro which has a 3830mAh, 11.4v battery. We profiled the execution time of local-field and whole-field301

RL using a Lenovo ThinkPad T470 as the edge system. This system has an i7-7500u processor, and302

24GB of RAM, and runs Ubuntu 18.04.303

2.6.1. Energy and labor costs estimation304

In order to compare the performance of all approaches from energy and cost perspectives, a simple305

cost-benefit model was developed by adding up revenue based on crop yield from all the management306

zones and subtracting the cost of treating misclassified zones (healthy classified as unhealthy and vice307

versa) as well as UAS deployment costs. The labor costs were considered to be $10 and $20/hour308

for unskilled and skilled workers, respectively [25]. It was also assumed that autonomous scouting309

approaches require only one unskilled worker to complete the entire survey, whereas exhaustive310

scouting requires an additional skilled worker (i.e., two in total) to plan and complete UAS surveys311

including setting up the system, planning the routes, and swapping UAS batteries. In non-scouting312

approach, it was assumed that farmers classify every zone as unhealthy and thus treat the field equally.313

2.6.2. Nutrient Runoff Risk314

We estimated potential risk of nutrient runoffs under various scouting approaches with two315

assumptions - 1) farmers tend to apply fertilizer uniformly throughout a field if they don’t have site316

specific information from scouting (i.e., non-scouting), and thus the nutrient runoff risk of a field is317

100%, and 2) if they have site specific information (i.e., various types of scouting), they apply treatments318

only to poor (i.e., unhealthy) sections of a field, which reduces the nutrient runoff risk. Thus, the319

potential of autonomous scouting approaches to reduce nutrient runoff risks is dependent directly on320

the false negative rates from the classification as unnecessary nutrient runoffs can occur when healthy321

zones are unnecessarily fertilized. To determine how these two autonomous scouting approaches help322

minimize nutrient runoff risk, we estimated the percentage of healthy zones that are unnecessarily323

fertilized.324



Version October 20, 2020 submitted to Sensors 10 of 16

3. Results and Discussion325

In this study, the accuracy, scouting cost, revenue, and energy consumption of the proposed fully326

autonomous scouting techniques were assessed and compared with state of the practice automated327

scouting and non-scouting approaches used in both precision agriculture and general agriculture.328

3.1. Comparing fully autonomous aerial scouting and conventional methods329

Accuracy differences between whole-field and local-field RL at both 20% and 40% coverage330

settings showed that whole-field RL at 20% coverage rate provides 2.3% better accuracy than local-field331

RL at 40% coverage rate (Figure 5). Local-field RL provided 74.5% and 80.3% accuracy at 20% and332

40% coverage, respectively. This is compared to 82.6% and 87.3% accuracy at 20% and 40% coverage,333

respectively, for whole-field RL.334

Figure 5. Accuracy of maps generated by autonomous scouting at different coverage rates.

Local-field RL outperformed whole-field RL considerably at avoiding false negatives. It335

experienced 8.3% and 8% higher positive recall than that of whole-field RL at 20% and 40% coverage,336

respectively. However, there was 67% increase in negative recall for whole-field RL over local-field RL337

at 20% coverage, and 58% at 40% coverage.338

Table 2. Accuracy, precision, and recall for maps generated using whole-field and local-field RL at
different coverage rates.

Coverage Rate 10% 20% 30% 40% 50% 60%

Local
Field RL

Accuracy 0.73 0.75 0.77 0.80 0.84 0.88
Positive Precision 0.69 0.69 0.72 0.75 0.79 0.83

Positive Recall 0.89 0.91 0.93 0.94 0.95 0.97
Negative Precision 0.49 0.57 0.64 0.72 0.78 0.85

Negative Recall 0.48 0.46 0.46 0.51 0.59 0.61

Whole
Field RL

Accuracy 0.70 0.83 0.85 0.87 0.89 0.90
Positive Precision 0.71 0.83 0.85 0.87 0.89 0.89

Positive Recall 0.71 0.84 0.87 0.89 0.93 0.94
Negative Precision 0.64 0.78 0.81 0.82 0.85 0.87

Negative Recall 0.65 0.77 0.80 0.81 0.83 0.83

When comparing two autonomous scouting methods for coverage rates of 10% to 60%, whole-field339

RL outperformed local-field RL considerably between 20% and 50% coverage while local-field RL340

outperformed whole-field RL at 10% coverage with a higher positive precision rate and less false341

positives (Table 2). At 10% coverage, local-field RL classified nearly the entire field as healthy342

compared to whole-field RL. At 60% coverage, there was a small difference in overall accuracy between343

whole-field and local-field RL; however, negative recall was significantly higher in whole-field RL.344

While local-field RL experienced consistent accuracy gains as coverage improves, whole-field RL345

experienced gains at lower coverage, with a considerable drop-off at 50%; its performance is restricted346
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by our CNNs, whose average accuracy is around 90%. This suggests that the marginal benefit of347

increasing whole-field RL coverage past 60% is likely not worth the marginal cost of labor and348

equipment. For over 60% coverage rate, the extra cost is more than the extra revenue comparing to a349

40% coverage rate.350

The main difference between the two autonomous scouting approaches is how they consider351

surrounding zones for prediction of crop health and pathfinding. Whole-field RL uses a CNN-based352

prediction window for path finding, in which a few poor management zones can reinforce the scouting353

of UAS for poor management zones in their surroundings. Local-field RL simply uses KNN-based354

linear approach, which predicts health condition of a management zone based on its adjacent neighbors,355

and thus, can achieve high positive recall. While it’s important to achieve high positive recall, negative356

recall can have significant cost implications when using this data for implementing site-specific357

management practices. Treating an unhealthy zone as healthy (negative recall) is estimated to cost 8358

times higher than treating a healthy zone as unhealthy (positive recall) (discussed in section 2.6).359

3.2. Autonomous Pathfinding and Extrapolation Comparison360

Both autonomous scouting approaches appear to alternate between two natural behaviors,361

exploration and scouting. Exploration involves the UAS traversing the field, covering large swaths362

in search of a region that contradicts current map conditions. Scouting involves the UAS moving in363

an exhaustive fashion across a region that the RL algorithm perceives as important. Whole-field RL364

was found to take better advantage of these two pathfinding behaviors by quickly finding areas that it365

perceives to be problematic, and more thoroughly scouting those areas. This contrasts with local-field366

RL approach where the first cluster is traversed but barely explored and a large chunk of the second367

cluster is ignored (Figure 6a). These discrepancies are likely due to the quality of the inputs provided368

to the RL algorithm in each approach. Whole-field RL provides its entire prediction and ground truth369

windows which more accurately locate relevant prior examples in the data set collected beforehand370

than the local features used in local-field RL.371

Whole-field RL
20% coverage

Whole-field RL
40% coverage

Local-field RL
20% coverage

Local-field RL
40% coverage

Figure 6. Whole-field and local-field RL beget different paths. [Note: A subset of UAS imagery was
used to better illustrate the difference in flight paths taken by local-field and whole-field RL approaches
along with resultant crop health maps at 20% and 40% coverage. The final predicted crop health
maps were evaluated in four colors, representing true positive, true negative, false positive, and false
negative, respectively.]

However, local-field RL outperformed whole-field RL in some cases at a low coverage rate372

(Figure 6b). Distracted by traces of tractors, whole-field RL spends a considerable amount of time373

scouting a questionable narrow area in the top left of the field, while local-field RL rushes to the bottom374

to explore a region that is partially negative or unhealthy. While whole-field RL eventually finds the375

bounds of the large negative cluster, the quick decision by local-field RL that leads to finding the bad376

cluster earlier leads to improved accuracy at this low coverage setting.377
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Differences between the local-field and whole-field RL extrapolation methods are also apparent378

when examining the four output maps. Both local-field RL maps show significant clusters of false379

negatives (pink areas). This is due to the underlying KNN-based extrapolation algorithm. When380

local-field RL’s extrapolation algorithm encounters a cluster of similarly classified points, it tends to381

reinforce that classification across nearby unpredicted zones. One cluster of negative zones would382

be easily extrapolated such that a huge area of a field could be falsely predicted as negative (details383

shown in predicted crop health map by local-field RL in Figure 6a). This behavior is not as apparent in384

whole-field RL which uses online predictions to fill zones instead of binary extrapolation.385

3.3. Autonomous Scouting on Fields with Various Crop Health Conditions386

The performance of whole-field RL was explored on two very different regions, one which is387

primarily comprised of healthy zones, and another primarily comprised of unhealthy zones (Figure 7).388

In the first image, crop density was lower in portions of the field where areas appeared to be compacted389

by agricultural machinery. Other portions appeared to be low elevation areas, where crops emergence390

was impacted by prolonged saturation of water (i.e., ponding). In contrast, the second image showed391

a healthy corn field where lush green corn rows can be seen, separated only slightly by intermittent392

gaps.393
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Figure 7. Accuracy of whole-field RL at 20% and 40% coverage rates for largely healthy and largely
unhealthy samples.

Whole-field RL achieved over 90% accuracy for both coverage rates in the healthy sample. The394

accuracy increased over the average accuracy of the total data set is due largely to the uniformity of395

the healthy image, which indicates that whole-field RL can accurately extrapolate from a set of entirely396

healthy management zones. However, the size of the reference set impacts accuracy. Sometimes397

unknown healthy images can be replaced with unhealthy images due to their similarity in comparison398

to the rest of the reference set, which keeps whole-field RL from achieving 100% accuracy on sample399

healthy image at both coverage rates. Doubling coverage only improved accuracy by 3.2% for the400

healthy image. In contrast, doubling coverage for the unhealthy image improved accuracy by 10.3%401

(Figure 7).402

The uniformity of the healthy image limits the accuracy gains from increasing coverage, which403

simply decreases the prevalence of false negatives generated erroneously by the reference set. Increased404

coverage in the non-uniform unhealthy image allows the system to get a better understanding of the405

topology of negative clusters to improve extrapolation. The importance of high coverage is apparent406

for predominantly unhealthy fields, but the low net accuracy must also be explained. Whole-field RL is407

largely negative-biased as discussed previously. When confronted with a majority negative image, the408

extrapolation procedure will reinforce negative regions, resulting in a larger number of false negatives409

than we see in, for instance, the health image in Figure 7. While whole-field RL experiences decreased410

overall accuracy on predominantly negative fields due to a high false negative rate, the decreased cost411
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of treating false negatives as compared to false positives discussed earlier in this section implies only412

modest losses from treatment costs as compared to crop loss from such incorrectly predicted zones.413

3.4. Effects of Prediction Window Size414

Window size
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Figure 8. (a) the effects of prediction window size on final crop health map accuracy at different
coverage rates for whole-field RL, (b) the execution times of software components for local-field RL
and whole-field RL with a window size of 15. [Note: Crop health map was generated offline.]

While comparing different combinations of prediction window sizes and coverage rates on415

accuracy, it was found that increasing prediction window size is not always beneficial (Figure 8a).416

For 20% to 40% coverage rate, accuracy is highest for the 15x15 window size, with lower accuracy417

proportional to both increases and decreases of the window size. 10% coverage rate had the highest418

accuracy at a window size of 19. Accuracy decreases at smaller window sizes can be attributed to a419

lack of iteratively updated prediction information with which to generate a final map. As the UAS420

moves around the field, it iteratively updates unseen but nearby areas to the flight path. If this window421

does not extend out far enough from the flight path, the only update that some areas will receive422

is the final extrapolation. At smaller window sizes, it is clear that some areas could have benefited423

from iterative updates, which would in turn increase accuracy. The opposite can be said for accuracy424

decreases with increased window size. If the prediction window is too large, the CNN approach may425

not be able to accurately predict their health due to their distance from ground truth. This result is426

critical to performance. Given the quadratic increase in latency as the prediction window increases, it427

is imperative that a whole-field RL system balances accuracy against increased costs due to latency.428

Given that we have found accuracy’s inflection point as a function of window size, a simple solution429

could be to use the most accurate window size, which we have done for these experiments.430

It is worth noting that as prediction window size increases, so does the size of the RL data set431

required for pathfinding. Both the increased number of predictions and larger pathfinding overhead432

increase system latency, so larger windows should be avoided to increase throughput unless accuracy433

returns justify them. The process to compute the final crop health map at the edge system offline434

by extrapolation after a mission is complete took on average 320X longer for whole-field RL than435

for local-field RL (Figure 7b). Whole-field RL’s CNN models required considerably more time due436

to computational complexities than local-field RL’s KNN-based approach. This process is, however,437

performed offline. Latencies simply determine how long the farmer must wait after mission execution438

to receive a crop health map. While whole-field RL experiences much higher latency in crop health439

map generation, both approaches return a map to the farmer in reasonable time.440

3.5. Energy, Labor Costs and Nutrient Runoff Risk441

The amount of charges required to map a hectare of crops differs between three scouting442

approaches due to the percent of field area covered in each approach (Figure 9a). Since it was443

assumed that the same amount of charges will be required to cover same size of a field across all444

scouting approaches, local-field and whole-field RL experienced the same charges at the same coverage445
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setting, requiring 6 charges at 20% coverage rate and 12 charges at 40% coverage rate. This compares446

to 29 charges to map one hectare of land using the traditional exhaustive scouting method which was447

found to require considerably more labor and charges to complete the scouting mission.448
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Figure 9. (a) Energy implementations and labor costs of autonomous scouting vs. exhaustive scouting,
(b) the impacts that autonomous scouting have on revenue compared to state of the practice methods.

There were significant differences in labor costs for different scouting approaches (Figure 9a).449

Considering the economic data from the 2018 growing season [25], at hourly rates of $10 and $20 for450

unskilled and skilled workers respectively, autonomous scouting methods were roughly estimated451

to cost $29 and $44 for 20% and 40% coverage of an 80-acre crop field, which compares to the $212452

mapping cost for exhaustive mapping using two labors.453

According to recently published agricultural cost data [25], the revenue per acre for corn is $763.8454

USD ($3.8/bushel * 200 bushels/acre). Revenue per management zone is calculated to be $0.8 for455

the size of 4.3 square meters per zone. The cost of fertilizer per acre is $130, which makes it $0.1 per456

management zone. Thus, one false negative management zone would cost a farmer $0.8 due to crop457

loss, while one false positive management zone would cost $0.1 in treatment cost. Based on this, when458

the field is not scouted, it is estimated to provide 36% less revenue than whole-field RL, and 27% less459

revenue than local-field RL (Figure 9b). Exhaustive scouting outperformed no scouting method by460

20% but loses out to local-field and whole-field RL by 5% and 17% respectively. While exhaustive461

scouting will provide 100% accuracy, allowing farmers to properly treat their entire field, the labor462

costs of exhaustively mapping large fields is outweighed by lower coverage autonomous mapping463

with extrapolation. We also explored the effects of a random sampling approach at 40% coverage464

using local-field RL. This automated approach without RL pathfinding underperforms compared to465

exhaustive by 1.2%, demonstrating that not all automated and naïve autonomous approaches are466

superior.467

Between autonomous approaches at 40% coverage, we found that whole-field RL garnered468

13% more revenue than local-field RL. Despite similar labor costs, the accuracy improvements over469

local-field RL, particularly among the negative recall, provides a considerable increase in revenue for470

whole-field RL over local-field RL. By limiting false negatives, whole-field RL was found to reduce471

higher runoff risk by 12% compared to local-field RL. However, all the revenue data are generated472

from our simulation environment, which means that they are under the best case scenarios without473

considering other important factors such as climate, weather, market and insects.474

4. Limitations and Future Work475

Autonomous scouting methods inherently avoid surveying 100% of a field to save time, energy,476

and money. This, however, runs the risk of missing critical field health problems. This problem can be477

minimized if a field is regularly monitored for potential crop health problems during growing seasons.478

A problematic section of a field that might not have been picked up by autonomous scouting at one479

time is likely to be picked up if the field is regularly mapped.480
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The cost-benefit model used in this study considers fertilizer application as the only treatment481

for unhealthy zones. Zones may have stresses such as pest and water other than nutrients only, and482

thus need to be treated accordingly, which could in turn influence the treatment costs. Also, costs and483

benefits were estimated based on corn only. Some of these estimates can differ by crop and treatment484

types. Thus, future studies should be focused on evaluating some of these factors.485

In the study, we used ExG as an indicator of crop health for simplicity. There are however other486

vegetation indices (e.g., NDVI, green index) and biophysical variables (e.g., soil organic carbon, pH,487

elevation) that are also reported to be good indicators of crop health [26]. Future studies could exploit488

a combination of these variables as indicators of crop health while developing models for autonomous489

scouting approaches.490

Future work should also focus on training, reinforcement learning, and testing of the models491

based on data sets with a variety of crops collected from separate fields in separate conditions. The492

RL approaches used in this study, q-learning algorithm, can also be compared with other related493

sampling algorithms such as rapidly-exploring random trees. Similarly, future work should address494

how prediction window size and its effect on architectural latency affects overall cost and performance495

considering its effect on accuracy.496

5. Conclusion497

In this study we design and discuss a new fully autonomous aerial scouting approach, whole-field498

RL, as compared to local-field RL approach and the current naive UAS approach of exhaustive499

scouting. The performance of these two RL approaches along with other popular scouting methods500

were assessed in terms of accuracy, precision, recall, and execution time of crop health maps, and501

cost-saving potential across different field coverage ranging between 10% to 60% of the total field502

area. Compared to local-field RL, whole-field RL can boost accuracy of crop health maps by 9%. This503

approach produces accurate crop health maps after flying over only 40% of the field. Whole-field RL504

reduced labor cost by 4.8 times, increased agricultural profits by 36% and reduced runoff potential505

by 87%. We found that coverage rate offers diminishing improvements in accuracy after 40%. The506

considerable improvement in performance of whole-field scouting over local-field scouting can largely507

be attributed to its added CNN models to use surrounding ground truth data to predict health508

condition of management zones in flight. In-flight predictions allow the final crop health map to be509

iteratively updated and refined in flight, producing a more accurate final product. Our evaluation510

shows that fully autonomous aerial scouting can guide crop field management techniques that use less511

money, less agricultural product and achieve greater monetary return than the state of the practice.512
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