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Abstract—Neuromorphic computing hardware mimics neuro-
biological architectures and promises eventual low power op-
eration. Additionally, arbitrary waveform generator hardware
permits the realization of complex radar waveform structures. In
this paper, we combine these two technologies and investigate the
potential of spiking neural networks to generate radar waveforms
and their suitability in dynamic environments where adapt-
ability is paramount. We discuss the process of development,
current limitations, and critical assumptions to realizing real-time
waveform adaptability with this hardware. Finally, we provide
simulation and a novel application of a spiking neural network
implemented on Intel’s Loihi research processor to classify a
waveform design dataset.

I. INTRODUCTION

In environments that contain many radio frequency (RF)
transceivers, the spectrum becomes crowded and different
devices can interfere with each other [1]. This has been
observed in traditional RF communications like radio and
television, and continues today in new technologies concerning
unmanned aerial vehicles and mobile devices.

This issue requires a way of designing transmit waveforms
in order to avoid said interference. One familiar method is
the Error Reduction Algorithm (ERA) [2], which is capable
of computing notched waveforms for pseudo-real-time ap-
plications. Unfortunately, this algorithm is not as accurate
as desired for shared spectrum access. Another method is
Reiterative Uniform Weight Optimization (RUWO) [3], which
is highly accurate in its waveform computations, but whose
accuracy comes at a cost of much slower convergence. An
objective of our research is then to achieve (or improve upon)
the convergence time of the ERA while maintaining the design
quality of algorithms such as RUWO.

A more recent approach is to use artificial neural networks
(ANN) to learn attributes of the RF environment and then
decide a course of action to optimize the usage of the spectrum
[4]. While this method is effective, it requires significant
pre/post-processing of data, which can be time consuming.
Some neural networks have been built to interpret data more
directly [5], thus bypassing a significant portion of this data

processing. However, these methods require larger networks
that necessarily consume more time and power [6].

Spiking Neural Networks (SNNs) are a class of ANNs
whose neurons imitate the temporally spiking nature of biolog-
ical neurons. Because of this, they naturally lend themselves
to time domain signal problems, as they themselves are built
on propagating signals over time [7]. Furthermore, the sparse
spiking nature of neurons allow for efficient use of energy,
and with SNN computational hardware such as the Intel Loihi
research processor [8], SNNs will be capable of performing
operations at a fraction of the time and power consumption
that they have been seen to use on traditional hardware [9].

In this paper, we develop a baseline SNN from an ANN
architecture to run on Loihi research hardware, and compare
its accuracy and speed to previously implemented methods for
radar waveform design. The ANN we reference is based on
that presented in [4], which is known to have high accuracy for
its dataset. The SNN will therefore approximate this known
accuracy, and can then be used as a baseline for future
SNN implementations, which may or may not be built from
underlying ANNs. Finally, we show preliminary results for
SNNs performing waveform design tasks.

A. Notation and Organization

Our notation for this paper is as follows: Column vectors
are denoted using lowercase underlined letters. An entry of a
column vector is indicated with square brackets. For example,
the kth entry of column vector, v is denoted v[k]. Matrices
are represented with bold, capital letters. F{·} represents the
discrete Fourier transform. Finally, | · |, �·�, and �·� represent
magnitude, ceiling, and floor functions respectively.

Section 2 will cover preliminary information about neu-
ral networks and signal interference. Section 3 discusses
the model of our neural network and relevant parame-
ters/background. Section 4 will discuss the results of our
SNN implemented on the Loihi processor. Finally, section 5
will cover the overall results and future steps of this line of
research.
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II. PRELIMINARIES

Let us consider the scenario of a radar system attempting
to transmit in a band partially occupied by sources of interfer-
ence. Our objective is to design the transmit waveform such
that the considered band is multi-purpose and we avoid other
users. This is a well studied waveform design problem with
solutions from traditional signal processing approaches [2],
[3].

A. Comparison of Waveform Design Algorithms

For comparison purposes, we reference two methods of
waveform design: first being the ERA, known for fast conver-
gence [2], and the second being RUWO, known for yielding
high quality waveforms [3]. RUWO gives a more accurate
result than ERA, but is also substantially slower to compute.
The goal is then to build some system that reaches RUWO
accuracy, while computing in a fraction of the run-time of the
ERA algorithm.

Another approach that is theoretically both fast and accurate
is discussed in [10], which uses Precompute and Lookup
(PAL), a hashing function that quickly looks up the best
approximate waveform from a library. While this method is
both accurate and efficient in time, the storage of precomputed
waveforms is unfortunately exponentially complex in space,
and so the required library cannot be stored for practical
scenarios. While the network presented here still relies on such
a library, the ultimate goal would be to use neural network
strategies to encode the information about PAL and the given
library in a smaller data space, which would achieve a similar
speed while using substantially less data.

B. Interference Model and Dataset Generation

For our example problem, let us suppose we have a single
Linear Frequency Modulated (LFM) interference signal, si,
with noise signal substantially lower than the interference.
Then we can set a threshold, γ, to create a binary frequency
mask

b =

{
1, if |Si| ≥ γ

0, otherwise
(1)

where Si = F{si}. b then indicates whether a given frequency
bin is occupied by interference.

The information contained in b that is relevant to us is the
information about which portions of the spectrum are occupied
by interference. Therefore, let us consider a vector, p ∈ N

l×1

that contains all indices for which the binary mask outputs 1:

p = {k ∈ N|b[k] = 1}. (2)

This vector is more efficient for input to a neural network
than the whole binary mask, but it can still be improved for
our simple case. To prune the data further, Boubin et al. [4]
proposes a data set with an input x, as a compressed version
of p. Simply put, x is a vector of m sample points that indicate

which frequency bins are occupied. Each point x[k] ∈ x is a
natural number that is sampled evenly from p:

x =

{
x[k] = p

[⌊
kl

m

⌋]}
. (3)

This feature extraction constitutes an attempt to use only rele-
vant features for distinguishing between different interference
environments, while decreasing the size and complexity of the
neural network’s input. Relevant features in this context are
points in the interference mask that exceed a given threshold;
therefore, we only provide the network points from these
features.

The dataset’s target output space corresponds to the indexing
of a predefined RUWO output, allowing us to simplify what
the output for the mapping should be. In summary, the
dataset consists of a given input vector corresponding to an
efficient representation of the interference, and a given output
corresponding to an index of a RUWO output library.

C. Feedforward Artificial Neural Networks

The dataset presented above was successfully learned by
a shallow feedforward ANN in [4]. This approach allowed
for RUWO accuracy in a small set of interference examples,
while improving computation time by an order of magnitude
over ERA. Supervised ANNs in general are known to be
highly successful in learning complex non-linear input/output
mappings. The input/output mapping is primarily learned
through the selection of weights and biases, which attempt to
extract relevant features from the input information in order to
map them to the output. There are several supervised learning
algorithms that can be used to find satisfactory weights and
biases, and additional information can be found in [11].

D. Spiking Neural Networks

While supervised ANNs have been popular in solving a
variety of problems in recent years, they become computa-
tionally intensive as they scale up, leading to a toll in SWaP
performance [6]. SNNs on specialized hardware could improve
this, as their neuronal activity is inherently sparse, potentially
leading to savings on power consumption of several orders of
magnitude [12].

An SNN is a type of neural network in which neurons ex-
hibit spiking behavior when presented an input, unlike ANNs
whose perceptrons hold constant values. Because a spiking
neuron exhibits behavior over time, different models exist to
describe this behavior. One popular neuron model for SNNs is
the Leaky Integrate and Fire (LIF) model, which is the simplest
model to design in an electronic circuit while still retaining
satisfactory practicality (depending on the application). The
LIF neuron’s primary behavior can be described by a circuit
consisting of a capacitor with capacitance c and resistor with
resistance r in parallel. With input current, i, the output
voltage, vcap, as the voltage across the capacitor, the behavior
at time t is:

vcap(t) = ri(t)− rc
dvcap
dt

. (4)
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As input is applied, the LIF neuron charges. However, the
LIF also leaks this charge at an interval determined by rc. Not
shown in equation 4 is an additional element in parallel with
the resistor and capacitor, that measures vcap. If the voltage
across the capacitor reaches some set threshold voltage, then
this component discharges the capacitor out as a spike. If
constant input is applied, then the LIF will spike at some
constant frequency, which will be a function of the input.

E. ANN to SNN

We can use this to build an SNN from a simple feedfor-
ward ANN. While there are several methods of coding ANN
attributes to SNN properties, the simplest to implement is
the rate coding scheme [13]. Rate coding uses the spiking
frequency as the information stored and gathered from neurons
in the SNN. Thus, if we build the SNN such that a given output
of the ANN corresponds to the frequency on a given output
of the SNN, then the SNN will replicate the activity of the
ANN.

F. Hardware Implementation

While we can operate SNNs on CPUs, it is more efficient
to realize their potential by operating them on hardware and
software optimized for spiking neural computations [9]. We
implement this SNN through the Python package, Nengo,
which was developed specifically for SNN design [14]. Nengo
is compatible with Intel’s neuromorphic research chip, Loihi,
and is capable of both programming a Loihi-embedded re-
search device, as well as emulating the Loihi hardware. This
is done through the Nengo-Loihi library and follows closely
to the class/function syntax of the core Nengo toolset. The
Loihi processor contains a set of neuromorphic cores, each of
which consists of 1024 neurons. Early implementations of the
Loihi have found improved speed and power performance for
several tasks previously implemented on traditional hardware
[12].

III. NEURAL NETWORK MODEL

In this section we cover the specific design of our neural
network. The goal is to build a proof of concept SNN that is
based on an ANN with known accuracy [4]. This can give us
a baseline SNN representation that we can only improve upon
in future applications of interference mitigation.

A. ANN Architecture

The initial ANN was developed consistent with [4]. The
inputs and output were normalized to the range of −1 to 1,
where the maximum value for a given dimension of training
data is mapped to 1, the minimum value of each dimension
is mapped to −1, and all other values are mapped linearly to
some value between −1 and 1. This scaling method can help
the convergence of training and reduce over-fitting.

The network consisted of a single hidden layer with tanh
activation function, and the output being connected directly
from the hidden layer via a weight matrix. The network was
trained using the damped least squares (DLS) algorithm, as
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Fig. 1: Example of convergence of the SNN output to the
target output. Input (not shown) is presented to the SNN at
time t = 0. the black dotted line indicates the target that the
SNN should reach. After 90 simulated ms, the SNN’s output
converges around the target output.

it was found to have better performance than standard linear
least squares. Table I summarizes our hyper-parameters.

The dataset was split into 80% training data, 10% test
data, and 10% validation data. Multiple randomly initialized
networks were trained and tested until a network reached
satisfactory generalization through validation.

TABLE I: ANN parameters

Parameter Selection
# Inputs 15

# Hidden Neurons 50
Hidden Activation Tanh

# Outputs 1
Output Activation Linear

Training Algorithm DLS

B. SNN Simulation

The ANN’s weights and biases were then transferred to an
SNN of equivalent structure. The SNN’s behavior is simulated
as a function of time. Since the output of the SNN is inherently
determined through behavior over time, the SNN will not
output its prediction immediately, but at some time t > 0
where t = 0 is the point at which the SNN is presented an
input. Therefore, the SNN’s behavior necessarily converges to
its prediction, as can be seen in figure 1.

Through trial and error, we determined that the SNN simula-
tion converged after a maximum of 90 simulated ms of being
presented an input. Thus, the simulation time chosen for a
given SNN input is 100 ms: 90 ms for convergence, and 10
ms for measuring and averaging the output. Note that this time
is not the actual time that the hardware takes to compute the
output. While there is a relation between the simulation time
and the real computation time, the real-time computation speed
also depends on the time-step period used in simulating the
SNN, as well as the time that the hardware takes to compute
the simulation for a single time-step.

936

Authorized licensed use limited to: The Ohio State University. Downloaded on March 27,2022 at 16:01:28 UTC from IEEE Xplore.  Restrictions apply. 



The flow of the SNN is as follows: the inputs are trans-
formed via the first weight matrix from the ANN, and the
result is then sent as the input to the neuron layer. The general
equation describing these neurons are shown in equation 4.
However, this function is in continuous time, while both the
Nengo software and the Loihi hardware simulate this behavior
with discrete time-steps. Thus, with some sampling frequency
fs:

vcap[n] = vcap[n− 1] +

(
i[n]
c

− vcap[n]

rc

)
Δt (5)

where n is the current time-step, i[n] is the simulated current
at time-step n, and Δt = 1

fs
is the period of a single time-step.

When the voltage across the capacitor reaches some thresh-
old, vthresh The capacitor discharges:

vpos[n] =

{
vthresh, if vcap[n] ≥ vthresh

0, otherwise
(6)

where vpos is the voltage of the spike going out from the
neuron. Finally, vcap at time-step n is updated, as the capacitor
has now lost some of its charge:

vcap[n+ 1] =

{
vcap[n]− vthresh, if vcap[n] ≥ vthresh

vcap[n], otherwise
.

(7)
As the selected resistance r approaches ∞, the leakage rate

becomes slower and slower. If we remove the resistor from our
circuit altogether such that the capacitor is the only connection,
then our LIF model becomes equivalent to a spiking Rectified
Linear Unit (ReLU) model. That is, the spiking frequency of
this neuron is linear with respect to positive input and zero for
negative input. The function for voltage across the capacitor
becomes

vcap[n] = vcap[n− 1] + i[n]. (8)

In an ANN, a single neuron can output both positive and
negative values. SNNs, on the other hand, cannot directly
output a negative value, since the neurons cannot fire at a
negative frequency. Therefore, a copy of the first layer is used
to represent the ANN’s negative neuron values. The input
current to the negative layer is then:

ineg[n] = −i[n]. (9)

Likewise, the final output voltage is updated to be the
difference between the first layer and the negative layer:

vout[n] = vpos[n]− vneg[n] (10)

where vneg derives from equation 6, but with ineg replacing
i in equation 5. The output, vout, is a train of positive and
negative Dirac pulses with magnitude vthresh.

This spike train is passed into a synapse, which in our case
is a straightforward first order low-pass filter with impulse
response [12]:

h[n] =
1

τ
e−nΔt/τ (11)

with τ as a time constant for the synapse and a hyper-
parameter for each neuron layer in the SNN. These synapses
regulate the spiking signals and translate a given frequency to a
single value. A larger value selection for τ for a given synapse
results in a longer convergence time for the network. On the
other hand, too small a selection of τ will increase “jitter” in
the output, since this synapse does not substantially filter the
spiking signal, which can lead to variation in accuracy. Table II
gives the values used for this SNN. The outputs of the hidden
layer neurons are then plugged into a tanh activation function
and fed through the final weight matrix and synapse to acquire
the output.

TABLE II: SNN Parameters

Parameter Selection
Presentation Time 100 ms

Max. Neuron Firing Rate 600 Hz
Hidden Layer Synapses τ 0.01

Output Synapse τ 0.015

C. Loihi Implementation

The SNN was implemented using the Nengo Python li-
braries, which act as a class representation of the Loihi
hardware. The inputs and output are Node objects in Nengo
and correspond to I/O from the host to the Loihi’s cores. The
spiking layers correspond to Spiking ReLU neurons in the
Nengo library, and correspond to a neuron block on the Loihi
chip.

It is important to note that a key difference between the
Nengo simulation and the Loihi hardware implementation is
that Loihi exhibits “reset-to-zero” behavior. That is, instead
of the update behavior as in equation 7, the Loihi hardware
updates the neurons as the following:

vcap[n+ 1] =

{
0, if vcap[n] ≥ vthresh

vcap[n], otherwise
. (12)

In other words, if the voltage stored at a neuron for a given
time-step is greater than or equal to the threshold voltage,
then all the charge is effectively drained from the neuron. This
discrepancy has been addressed in APIs supported directly by
Intel, but is still being developed for Nengo implementations.
Therefore, it is necessary to find an alternative workaround.

Since the problem has to do with vcap overshooting the
threshold, simulating with smaller sampling period, Δt could
decrease the amount of charge presented at a given time-step.
This would lead to a smaller difference between vcap and
vthresh for the case when the accumulated voltage is greater
than the threshold.

On the flip-side, increasing the sampling rate also results
in a higher number of computations for the Loihi, leading to
longer computation times. Figure 2 shows how the Loihi’s
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Fig. 2: Loihi Spiking ReLU neuron for different time-steps vs
ideal Spiking ReLU neuron. Larger time-steps (i.e. sampling
period) leads to lower frequency range, which causes higher
aliasing in the neuron’s spiking rate due to the “reset-to-zero”
behavior.
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Fig. 3: SNN converges but undershoots due to effects from
the “reset-to-zero” behavior. The averaged measurement is 2
indices lower than desired (separation of indices shown by
colored horizontal lines).

neuron’s output changes based on different sampling periods.
From these results, we selected Δt = 0.1 ms as the sampling
period, as it outputs with satisfactory precision while still
remaining reasonably fast to compute. Additionally, with this
time-step selection, we found the accuracy of the neuron to
decrease substantially after 600 Hz even with sampling period
of 0.1 ms. Therefore, this was our selected maximum firing
rate.

IV. EXPERIMENTAL EVALUATION

We built the SNN model through Nengo and ran the SNN
on the Intel Kapoho Bay, a USB device embedded with Loihi
processors, as well as Nahuku FPGA board, a board integrated
with a set of Loihi processors and tools for measuring energy
consumption. While we tested the model on both, we use
the time results from the Nahuku, as this board gives details
about how much time each hardware component uses, whereas
Kapoho Bay only reports the total computation time.
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Fig. 4: The output waveform is shifted from ideal due to the
undershooting of the SNN output.

The output corresponded to a given index of the RUWO
library. If the output strays too far from the target output, then
the selected index becomes some number of bins off from the
intended target index. Figures 3 and 4 show how such error can
occur. For our case, the simple library was arranged such that
similar waveforms were located near each other in the library.
Because of this, the error due to a misclassification could be
mitigated to some extent through library organization.

A given test input was presented to the SNN for 100 sim-
ulated ms. With time-steps of 0.1 ms, the Nahuku would run
1000 time-steps to compute a given dataset example. While the
total run-time for a single time-step was 3.51 ms, most of this
time was due to I/O, which was primarily due to how Nengo
interfaced with the Loihi hardware, and can be remedied in
the future. Ignoring host-chip I/O communication, the device
computed one time-step in 42 microseconds, leading to a 42
ms computation time per dataset example. Such a time would
be comparable to the computation time of the ERA algorithm.

In regards to accuracy, The SNN converged to an output that
corresponded to being within 2 indices of the optimal RUWO
library waveform 96 percent of the time, with the worst case
scenario still remaining within 3 indices. For our case, this
translates to an output notch typically being within 10 Hz of
the ideal notch or better, and a worst case scenario being about
15 Hz off from the ideal. Figure 5 shows an example of the
worst case.

It may be possible to improve the wave quality further. One
method would be to increase the null width of the notches.
This would guarantee mitigation of interference, but would
come with a toll to bandwidth efficiency. As it is, our null
widths are wide enough to mitigate the peak interference
frequencies for our example, but it would be important to
consider this factor for more complex interference environ-
ments. Another possibility would be to increase the output
range, which was normalized between +/ − 1, to a larger
scale such as +/ − 2. It may be more difficult to train the
ANN tightly for this case, but it could also allow for more
leniency toward the SNN’s approximations and improve the
performance of the SNN overall.
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Fig. 5: Worst case scenario for SNN output. The output is
shifted approximately 15 Hz off from ideal.

V. CONCLUSION

We have developed the first application of an SNN im-
plemented on Loihi hardware to classify a waveform design
dataset. The waveform quality was close to that of RUWO,
and the main computational work performed on the same time
scale as the ERA algorithm. The results here provide a proof of
concept baseline for the performance of an SNN on specialized
hardware for a waveform design task. Future work should
therefore go into training SNNs to learn the RUWO frequency
domain directly rather than relying on a precomputed library,
and potentially even learn to output a high quality signal
directly from a time domain input. Such work has great
potential to address important problems involving waveform
design and interference mitigation.
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