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I. INTRODUCTION

Small Unmanned Aerial Systems (sUAS) are small IoT de-
vices (weighing less than 55 lbs) that fly without human pilots
aboard. sUAS use sensors and auto pilot software to hover, fly
and land autonomously. Without humans aboard, lightweight
sUAS can fly low, only meters above the ground, to capture
detailed, high resolution images. These images can inform
agricultural crop management by detecting crop health issues,
such as nitrogen deficiency [6], [9], overcrowding [5], and
soybean defoliation [10]. Other uses for sUAS include search
and rescue [3], inspection for buildings and bridges [8], and
photography. A mission is the unit of workload for sUAS. It
includes aerial maneuvers, sensing, and computation required
to complete a task. For example, in digital agriculture [4],
a sUAS tasked with generating a report on crop health may
conduct a mission that includes flying to a targeted area,
capturing images of the crop, and applying machine learning
to translate the images into a crop health characterization.

sUAS support multiple operating modes for mission ex-
ecution. In remote-control mode, a human operator sends
flight commands to the aircraft throughout a mission via a
remote controller or smartphone. The human operator decides
where to fly and when the mission is complete. In waypoint
mode, an operator tells the sUAS to fly to preset waypoints.
In this mode, the operator still tells the drone where to
fly but the aerial portion of the mission is complete after
visiting all preset waypoints. Finally, in the autonomous-flight
operating mode [3], [7], software running aboard the aircraft,
on edge devices, or in the cloud decides where to fly during
mission execution, removing the human operator from the
loop. This operating mode can reduce costs substantially by
(1) simplifying the role of the operator, (2) avoiding human
errors, and (3) efficiently provisioning compute resources [2].
This poster paper explores research challenges when sUAS
use the autonomous-flight operating mode.

Missions that cover large geographic regions present chal-
lenges for sUAS. To keep the aircraft light, sUAS carry small
batteries that are drained quickly (25 minutes) during flight.
To explore large regions for more than 25 minutes, sUAS op-
erators must recharge and exchange batteries. This process is
manual, time consuming, and costly. One solution is to deploy
multiple sUAS in parallel, i.e., in swarms. In autonomous flight
mode, swarm members can carry out missions independently,
increasing geographic throughput in proportion to swarm size.

For this short paper, we deployed sUAS swarms for agri-

cultural crop management. We compared two approaches for
swarm design: task parallel versus data parallel. The task
parallel approach splits a mission into smaller tasks. Swarm
members carry out each task independently without coordi-
nation. That is, swarm members are provided all of the data
needed to execute the task beforehand. In the data parallel
approach, swarm members share images observed during each
task, aggregate them, and use the data to update autonomous
flight plans. Each swarm member processes a partition of the
data represented by the whole field. The data parallel approach
presents opportunities and risks. On one hand, sharing data can
improve autonomous flight paths, allowing swarm members
to complete tasks efficiently by visiting only waypoints that
contribute to final reports. On the other hand, data parallelism
increases the computational load, i.e., the cost of updating
autonomous flight paths may outweigh the benefits.

II. DESIGN AND DEPLOYMENT

We used 3 sUAS (DJI Mavic) to scout a 30-hectare field
used to grow soybeans. The task was mapping the prevalence
of soybean defoliation, a warning sign for insect infestation.
If undetected, insect infestation can degrade crop yield rapidly
and significantly. Using task parallelism, we could scout the
whole field in 8 hours. Each sUAS autonomously maps a 0.4-
hectare geographic region before its battery was recharged. For
this study, we repeated the mission over 150 times across a
variety of runtime conditions. Our experiments spanned three
weeks in the field.
Computational Workflow: Autonomous flight mode uses
edge gateways to compute the next flight action [3] given
the most recent sensed image. Precisely, the data pipeline
was as follows. After takeoff, the sUAS flew to an initial
waypoint, hovered for 5 seconds, and captured a 4K high-
definition image. The image was transmitted to an edge
gateway via 5 Ghz radio through the remote control. Then, the
edge gateway used a convolutional neural network to classify
defoliation in the image as ‘significant‘ or ‘insignificant/none‘.
Reinforcement learning software on the edge gateway used
recent observations of defoliation to choose the next waypoint
to visit. This waypoint was then sent to the sUAS.
Data-Parallel Swarms Our task-parallel swarm design sim-
ply divides a 30-hectare mission into 75 independent 0.4-
hectare geographic regions. Each sUAS maps 25 regions
without sharing or reusing data between tasks. In contrast,
data-parallel swarm design shares images after each mission,
updating reinforcement learning software on edge gateways.
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Fig. 1. (A) Work and data flow for sUAS to map soybean defoliation. (B) On average, data-parallel swarms are 6% less efficient than task-parallel swarms.
(C) The most efficient data-parallel missions outpace task-parallel missions.

We connected edge gateways for each drone with a 1 Gb/s
router and connected another edge device. We used multi-
agent reinforcement learning to update reinforcement learning
policies based on the observations of recent tasks within the
mission.

We hypothesized that data-parallel swarms would execute
missions more efficiently than task-parallel swarms because of
dynamic updates to reinforcement learning.
Deployment: In this paper, we implement a convolutional
neural network (CNN) model, called DefoNet [10], to predict
the leaf defoliation conditions in a soybean field. DefoNet is a
binary CNN that classifies images of soybeans as either signifi-
cantly defoliated or healthy. DefoNet uses eight convolutional
layers partitioned into 3 blocks with activation and pooling
between blocks. In testing, DefoNet correctly classifies 92% of
expertly labeled soybean images. In our deployment, DefoNet
was deployed using the Fleet Computer [1], an adaptive
edge deployment model for autonomous systems. Using these
technologies, we deployed our UAV swarm to analyze soybean
fields in flight.

III. RESULTS

We examined power efficiency for battery drain during
mission execution. Specifically, our metric of merit is speedup
from parallelism. Aggregate energy consumption divided by
geographic coverage times mission duration.

Speedup =
Energy

RegionSize×Duration
(1)

Recall, we report averages over many runs in varying envi-
ronmental conditions.

Figure 1(B) reports our first finding: our data parallel
approach was 6% less efficient than task parallel on average.
We attribute this to additional time spent idly hovering while
data from missions were transferred to the edge gateway to
update reinforcement learning models. RL model updates are
computationally costly to update, leading to increased wait
times for inference.

Figure 1(B) also reports significant variance in power ef-
ficiency of the data parallel approach. In all cases, a single
standard deviation can cause a significant increase speedup.

Figure 1(C) reports the primary finding for our preliminary
work: Data-parallel swarms, under the right deployment
conditions, can be 2X more efficient than task-parallel
swarms. This plot examines the 20 most efficient settings
for each approach. We observe that data-parallel swarms can
achieve power efficiency unattainable by task-parallel swarms.
This gives rise to an important opportunity for computer
systems research. Can we adaptively deploy data-parallel
swarms to improve efficiency when the environment warrants?
Alternatively, can we tailor the environment of sUAS missions
to exploit the potential for data-parallel swarms?
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