
A Study on Software Bugs in
Unmanned Aircraft Systems

Max Taylor, Jayson Boubin, Haicheng Chen, Christopher Stewart, and Feng Qin

Abstract— Control firmware in unmanned aircraft systems
(UAS) manage the subsystems for in-flight dynamics, navigation
and aircraft sensors. Computer systems on-board the aircraft
and on gateway machines can now support rich features in the
control firmware, such as GPS-driven waypoint missions and
autonomy. However, the source code behind control firmware
can harbor software bugs whose symptoms are detectable
only during flight. Often, software bugs in UAS have seri-
ous symptoms that lead to dangerous situations. We studied
previously reported bugs in the open-source repositories of
ArduPilot and PX4, two widely used control firmware for UAS,
and characterized their root causes, severity and position in
the firmware architecture. Even though both platforms have
employed rigorous software engineering practices, bugs were
common and often had severe symptoms (e.g., crashes.) In
particular, bugs associated with mishandling aircraft sensor
readings were the leading cause for bug-induced crashes.
Finally, we used simulation to study the symptoms of sensor
bugs and found that source code repositories under reported
their frequency and impact. Our study motivates multiple
research directions on software reliability in UAS firmware.

I. INTRODUCTION

Control firmware platforms, such as the ArduPilot Autopi-
lot Software Suite (ArduPilot), fly unmanned aircraft systems
(UAS) by sensing the state of the aircraft, responding to
user commands, and adjusting pitch, roll, yaw, and thrust for
navigation. In 2020, the code base for ArduPilot exceeded
700,000 lines of code [2] and libraries within the software
suite added 2,000 lines of code per month [1]. Control
firmware like ArduPilot now supports a wide range of
features for UAS including: (1) support for multiple types
of vehicles, (2) support for semi-autonomous flights between
preset waypoint locations, (3) dynamic collision avoidance
during flights, and (4) programmable interfaces that enable
fully autonomous navigation [21], [22], [5]. Increasingly,
UAS firmware need sophisticated computer systems, either
on the aircraft or at nearby gateway machines. For example,
the design of the Myriad processor was tailored for contin-
uous image processing in UAS [4] and was used in the DJI
Mavic, a popular UAS product.

Like all large software systems, UAS control firmware
harbor bugs— i.e., mistakes in the source code that slip past
compilers and software engineering tests and produce symp-
toms during flights. Often, bugs only produce symptoms
if the aircraft, environment or control firmware encounter
triggering conditions. The symptoms can vary depending
on the bug, conditions, and environment. Benign symptoms
may cause the aircraft to jerk during flight, before resum-
ing normal flight. Severe symptoms include crashes and

unresponsive aircraft. UAS crashes may not only destroy
costly aircraft but also risk human lives, especially when
unresponsive aircraft enter populated or restricted air space.

In this paper, we present an approach to study and char-
acterize software bugs in widely used, open-source control
firmware. Our approach uses online source code repositories
and developer discussion forums to (1) find software patches
intended to fix bugs in the code base, (2) understand the
root cause of the bugs, and (3) characterize the severity of
reported symptoms. Our analysis of reported software bugs
quantifies prevalent root causes and symptoms and identifies
areas within the code base that harbors severe bugs. We
also study bugs under previously untested conditions to (1)
determine if bug symptoms are reproducible, (2) quantify
the scope of triggering conditions, and (3) measure the delay
between triggering conditions and observed symptoms.

Our study examines 277 firmware bugs in the ArduPi-
lot [2] and PX4 [19] code bases from 2016-2020. We
reconstruct each bug using its corresponding software patch
and developer comments and then label the root cause and
symptoms. 21% of the firmware bugs in our study are severe,
leading to crashes or unresponsive aircraft. Even though the
root cause of most bugs is semantic (66%), bugs related to
aircraft sensors are most likely to manifest severe symptoms.
We re-insert sensor bugs into the code bases and simulate
UAS flights across a wide range of conditions. We observe
that the triggering conditions described in developer forums
understated the full range of triggering conditions.

This paper presents a pragmatic approach to study soft-
ware bugs in control firmware. By reconstructing root causes
from code repositories, we uncover patterns in the root causes
and symptoms of bugs in UAS firmware. Developers can
use these patterns to preemptively search their code base for
bugs. The results also call for renewed research on software
reliability, e.g., verification and model checking, targeted
at UAS. Specifically, the contributions of this paper are as
follows:

1) We characterize 277 bugs in the ArduPilot and PX4
code repositories; the largest research study of these
repositories to date.

2) We quantify the frequency of bugs by root causes,
symptoms and location in the source code.

3) We define sensor bugs and explore their triggering con-
ditions, presenting evidence that this class of bugs can
produce severe symptoms more often than previously
thought.

The rest of this paper is organized as follows:

2021 International Conference on Unmanned Aircraft Systems (ICUAS)
Athens, Greece. June 15-18, 2021

978-0-7381-3115-3/21/$31.00 ©2021 IEEE 1439

20
21

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 U

nm
an

ne
d

Ai
rc

ra
ft

 S
ys

te
m

s (
IC

U
AS

) |
 9

78
-1

-6
65

4-
15

35
-4

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
U

AS
51

88
4.

20
21

.9
47

68
44

Authorized licensed use limited to: The Ohio State University. Downloaded on March 27,2022 at 15:59:06 UTC from IEEE Xplore. Restrictions apply.

• Section II compares our approach to prior bug studies.
• Section III describes how we form our bug collection.
• Section IV presents the main results of our bug study.
• Section V describes how to systematically reproduce

sensor bugs.
• Section VI discusses our experience reproducing known

sensor bugs.
• Section VII discusses the implications of our work.

II. PRIOR WORK

This paper complements prior research that characterizes
software bugs, i.e., bug studies. Bug studies target code bases
that (1) have large developer communities and (2) underlie
popular software products. The findings from bug studies can
reduce the prevalence of bugs, improve automated tests, and
lead to better programming paradigms. However, the findings
from bug studies depend on available data. In particular, we
compared prior work along the following dimensions:

1) Did the study cover all types of bugs or did it target
certain types?

2) How many bugs were included?
3) Did the study characterize the runtime execution of

bugs, i.e., were the bugs implemented and tested?
4) Did the study target unmanned aircraft systems?
Zhong et al. [27] comprehensively studied bugs and their

corresponding patches in large Java projects, including Cas-
sandra, Lucene and Mahout. The study covered 9,000 bugs,
describing the root causes, location in code and efficacy of
the patch. However, the patches were not tested directly
under realistic conditions. Lu et al. [16] collected 105
concurrency bugs, i.e., mistakes in the source code that are
triggered by the interaction among two or more threads
of execution. While the study focused on a narrow class
of bugs, it pioneered the data collection method used in
our study, examining open-source repositories and codifying
comments from developers. Chen et al. [6] studied 210 bugs
in cloud systems and built a static analysis tool to detect
common bugs. Garcia et al. [10] used this approach to
comprehensively examine 250 bugs in autonomous vehicles.

Our work is closely related to bug studies that target
performance bugs, i.e., mistakes in the source code that
slow down system execution. Runtime analysis is critical
to understand performance bugs. Jin et al. [14] examined
25 bugs from widely used server and desktop products,
including Apache web server and OpenOffice. Stewart et
al. [23] studied the runtime symptoms of 5 bugs in Java
server applications, finding an approach to avoid triggering
conditions during runtime.

Recent bug studies on unmanned aircraft systems (UAS)
have focused on case studies (5-10 bugs). Timperly et al. [25]
and Huang et al. [11] targeted semantic bugs, showing that
simulation can faithfully reproduce bugs and that bug studies
can provide insights for automated testing and patching
procedures. Gungen et al. [1] used software engineering
metrics to quantify the quality of the ArduPilot code base.

In comparison, this paper presents a comprehensive view
of bugs in ArduPilot and PX4, two widely used control

HAL

State
Estimation

Navigation

Actuation Comms

Fig. 1. Typical UAS firmware architecture.

firmware for unmanned aircraft systems. Our analysis of
277 bugs covers every architectural component in the plat-
forms. Further, we selected 5 bugs, reinserted them into the
code base and studied their dynamic execution patterns at
runtime. This allowed us to compare developer’s comments
about each bug’s triggering conditions to actual triggering
conditions observed during testing. We find that developers
often underestimate the number of triggering conditions.

III. METHODOLOGY

To ensure reliable operation in the presence of hardware
failures, UAS come equipped with redundant hardware.
However, the firmware responsible for managing hardware
can contain bugs. In this case, redundant hardware offers no
protection. This paper examines the effect of firmware bugs
on UAS reliability.

UAS firmware manages all aspects of vehicle behavior.
Figure 1 shows the typical architecture of UAS firmware.
Firmware is typically divided into several subsystems:

• Navigation - sets waypoints and manages the UAS
mission.

• Actuation - translates navigation commands to actuator
controls.

• State Estimation - provides an estimate of the UAS
physical state (e.g. position, orientation, etc.)

• Communications (Comms) - manages UAS communi-
cation with a ground control station (GCS).

• Hardware Abstraction Layer (HAL) - exposes a
portable hardware API to other subsystems.

A. Target Firmware

We study two UAS firmware: PX4 and ArduPilot. We
chose these firmware for four reasons. First, they have a large
mindshare of developers (nearly 1,000 combined). These de-
velopers can gain immediate insight from our study. Second,
PX4 and ArduPilot are stable. Their first releases appeared in
2009 and 2012. This allows us to learn what problems persist
in UAS firmware. Third, commercial projects have adopted
both firmware (e.g., [3]). Developers of other commercial
UAS firmware can learn from the struggles of these firmware.
Finally, both firmware are open source. Since all patches are
public, we can review bugs the community has identified.

B. Bug Collection

Both firmware maintain issue trackers publicly available
on Github. There have been more than 22,000 issues reported

1440

Authorized licensed use limited to: The Ohio State University. Downloaded on March 27,2022 at 15:59:06 UTC from IEEE Xplore. Restrictions apply.

over their lifetimes. We apply several filtering rules to make
this number manageable. First, we only consider issues
reported between 2016-2020. This reduces the number of
issues to just over 11,000. We also only consider issues
closed during this period. This reduces the number to 3,266.
Next, we require issues to have the “bug” label. This leaves
us with 1,379 issues. We also require issues to have an
accepted pull request (PR) associated with them. Note that
not all issues are linked to PRs properly in these repositories,
so we manually apply this filter. This leaves us with 489
issues.

We apply several manual filters to the remaining 489
issues. Some bugs are not in the UAS firmware, but instead
are in general purpose libraries maintained by the projects.
We remove those issues since they are not unique to UAS.
We also remove bugs reported in the build system. Finally,
we remove duplicate issues. This gives a final count of 277
bugs.

IV. BUG STUDY

This section presents the results of our bug study. We
consider the following research questions:

• RQ1: What types of bugs affect UAS firmware?
• RQ2: What are the symptoms of UAS firmware bugs?
• RQ3: How reproducible are UAS firmware bugs?
• RQ4: How do bugs affect each firmware component?
We find that UAS bugs are dangerous: 21% have serious

symptoms, such as crashes and fly-aways. Dangerous bugs
are also likely to impact users: 74% do not depend on special
hardware or timing conditions. Besides semantic bugs, code
handling sensor events exhibits the most bugs (20%). These
bugs are also more likely to be dangerous: about 34% have
serious symptoms. Table I contains our main findings.

A. What types of bugs affect UAS firmware?

We categorize each bug as one of the following: semantic,
sensor, memory, concurrency, or other. We define each type
as:

• Semantic - bugs that do not misuse computational ma-
chinery, but violate user’s expectations of UAS behavior.

• Sensor - illegal use of sensors (e.g. ignoring an IMU
saturation flag.)

• Memory - illegal accesses to memory (e.g. reads from
uninitialized memory and out of bounds accesses.)

• Concurrency - bugs that only occur in multithreaded
environments (e.g. data races and deadlocks.)

• Other - includes code smells, syntax errors on main
from incorrect merges, etc.

We choose this categorization for several reasons. First,
memory and concurrency bugs are well-studied. Tooling
exists to detect these bugs (e.g. Valgrind [18].) Second, the
dependency on sensors to perceive the environment sets UAS
firmware apart from other software. This motivates us to
consider sensor bugs as a separate category. Finally, semantic
bugs is a broad category characterized by what they are not
- they do not misuse the onboard computer or avionics, like

1 void handleMsg(MAVLinkMessage &msg) {
2 Location location;
3 switch (msg.coordinateFrame) {
4 ...
5 case MAV_FRAME_GLOBAL_INT:
6 - loc.alt = msg.alt;
7 + loc.alt = globalToRel(msg.alt);
8 loc.lat = msg.lat;
9 loc.lon = msg.lon;

10 }
11 }

Fig. 2. APM-3542: The MAVLink message handler supplies a value in
the wrong coordinate frame to the navigation system.

the other bugs, but instead are simply incorrect code. Since
this category is so broad, it naturally captures many different
behaviors. We break down the symptoms and add additional
labels to bugs in this category to help make sense of them.

1) Semantic Bugs: Semantic bugs dominate. Complex
protocols contribute to this problem. For example, ground
control stations (GCS) communicate with UAS using
MAVLink [17]. MAVLink contains hundreds of commands.
Commands often support several coordinate frames for pro-
viding parameters. Firmware message handlers must map the
coordinate frames of each message to a common frame. But
there is not a single common frame in ArduPilot or PX4; dif-
ferent components prefer different frames. To make matters
worse, MAVLink does not standardize measurement units.
Some messages use meters, others centimeters, etc. Message
handlers must translate measurement units to the preferred
system for the target component. Correctly supporting the
semantics of MAVLink alone is a complex task.

Finding 1: Semantic bugs account for over 65% of bugs.

To further investigate this issue, we mark all bugs af-
fecting MAVLink. We also label each bug where incorrect
unit conversions play a factor. Nearly 11% of semantic
bus involve MAVLink and over 10% involve incorrect unit
conversions. Among all bugs, we find that 7% of all bugs
involve MAVLink and 6.5% of all bugs involve incorrect
units or orientation conversions.

Figure 2 is an example of a semantic bug. Here, ArduPi-
lot’s MAVLink message handler stores the message’s alti-
tude in the resulting location’s altitude (line 6). When this
code executes on a quadcopter, this is incorrect. ArduPilot’s
quadcopters navigate by using altitudes relative to the launch
location’s altitude. The navigation system interprets the alti-
tude stored on line 6 as relative to the launch altitude, when
it is in fact relative to sea level. This causes the navigation
system to lead the UAS to an incorrect altitude. The fix is
simple: convert the altitude to the correct coordinate frame
(line 7.) Managing MAVLink is challenging. There are 21
different types of coordinate frames. As we see here, each
vehicle requires custom handlers for each frame type. It is

1441

Authorized licensed use limited to: The Ohio State University. Downloaded on March 27,2022 at 15:59:06 UTC from IEEE Xplore. Restrictions apply.

TABLE I
THE DISTRIBUTION OF THE ROOT CAUSES AND THE SYMPTOMS FOR BUGS IN ARDUPILOT AND PX4.

Root Cause Serious Symptom Not Serious Symptom TotalCrash Fly-Away Bad Navigation Jerk No Symptoms Other
Sensor 17 6 7 3 17 13 63
Memory 11 0 0 0 2 0 13
Concurrency 1 0 0 0 1 1 3
Semantic 18 6 39 7 81 32 183
Other 0 0 1 2 12 0 15
Total 47 12 47 12 113 46 277

easy for developers to make small mistakes like the one in
Figure 2.

We identify three ways to address these challenges. We
describe them from the easiest to implement to the hardest.
First, developers and researchers can work together to create
tooling to enforce their project’s unit and coordinate frame
conventions. This allows existing work to gradually improve.
Second, developers can lean on their language’s type system
more. For example, each unit (e.g. meters) can have its
own type. This way, the compiler can enforce that unit and
coordinate frames are correct in new components. Finally,
in the long-term, creating simpler communication protocols
can ease the burden on developers. A simpler protocol should
standardize coordinate frames and measurement units.

2) Sensor Bugs: Sensor bugs are the next largest share.
One challenge faced by firmware is that navigation does
not rely on sensor values directly. Instead, sensor readings
are fused into a state prediction by an Extended Kalman
Filter (EKF.) EKFs are complicated machines. They employ
a model that uses observed variables (i.e. sensor readings)
to form the most likely estimate of hidden variables (i.e.
the UAS’s physical orientation.) It is difficult to change the
underlying model of the EKF when sensors fail, so firmware
does not implement this. Instead, firmware relies on failsafes.
But if multiple sensors experience faults, competing failsafe
behaviors can cause undefined UAS behavior. Moreover, the
state of the EKF becomes tainted if it uses stale values from
the failed sensor instance.

Finding 2: Incorrect use of sensor values occurs in over
22% of bugs.

Figure 3 shows an example of a sensor bug. The navigation
system checks the GPS speed (line 2.) If the speed is less
than the stall speed, the navigation system invokes a crash
handler (line 4.) However, this logic is incorrect. If the GPS
fails, then the GPS speed is reported as 0. This causes the
navigation system to incorrectly detect a stall, even though
the UAS is still airborne. The crash handler proceeds to
disarm the UAS, causing a crash. The solution is to verify
the health of the GPS before using its measurement (line 3.)

3) Memory Bugs: Memory bugs (5% of bugs) occur more
rarely in UAS firmware than other software (e.g., 12-16%
in conventional software, found in [15]). We believe there
are two main reasons. First, firmware developers deliberately

1 void doNavigation() {
2 - if (gps.speed() < STALL)
3 + if (gps.ok() && gps.speed() < STALL)
4 handleCrash();
5 ...
6 }

Fig. 3. APM-9349: The navigation system incorrectly uses a stale sensor
value, causing the UAS to crash.

avoid memory allocation as much as possible. Allocation is
often slow and energy-intensive. Fewer allocations presents
fewer opportunities for programming mistakes. Second, PX4
and ArduPilot both use the Valgrind memory checker. This
helps developers catch bugs before they can appear in stable
releases.

Finding 3: Memory and concurrency bugs are rarer in
UAS firmware than other software.

Despite the fact that memory bugs are rarer, they are
more catastrophic in UAS firmware than other software.
An invalid access in most software results in a relatively
harmless program crash. However, when UAS firmware
crashes the results are severe. Moreover, firmware supports
environments without memory management units. Invalid
accesses can silently corrupt the firmware’s address space in
these environments, leading to incorrect execution later on.
Motivated attackers can target these bugs to hijack firmware
control flow.

4) Concurrency Bugs: Concurrency bugs are also rare in
UAS firmware, accounting for less than 1% of bugs. This
is because both projects use threads in simple, consistent
ways. PX4 runs each module in its own thread. Inter-
thread communication uses an asynchronous publish/sub-
scribe system. Since the flight tasks guiding UAS behavior
must tolerate measurement uncertainty, strict delivery time
guarantees are unnecessary. The use of the pub/sub system
prevents data races. Asynchronous communication generally
prevents blocking on messages from other components, mak-
ing deadlocks rare.

ArduPilot uses a different approach for managing firmware
tasks. Every module registers its tasks with the scheduler. A
1KHz timer invokes tasks according to their schedule on a
single thread. ArduPilot only runs a few threads (e.g. several

1442

Authorized licensed use limited to: The Ohio State University. Downloaded on March 27,2022 at 15:59:06 UTC from IEEE Xplore. Restrictions apply.

TABLE II
THE DISTRIBUTION OF THE ROOT CAUSES AND THE SYMPTOMS FOR BUGS IN EACH FIRMWARE COMPONENT.

Comp. Serious Symptom Not Serious Symptom TotalCrash Fly-Away Bad Navigation Jerk None Other
HAL 23 0 2 1 27 18 71
State Estimation 4 7 10 4 18 4 47
Actuation 4 2 10 3 5 5 29
Communication 1 1 3 0 22 8 35
Navigation 11 2 22 3 19 9 66

for I/O and one for the task system.) This approach reduces
the probability of data races. Concurrent variable access
is impossible for module tasks. Only the core background
threads can contain data races.

B. What are the symptoms of UAS firmware bugs?

We manually label each bug’s symptoms as one of the
following:

• Jerk - when the UAS undergoes a transient position
change. Typically, the pilot experiences the vehicle’s
position jumping and then stabilizing.

• Crash - when the UAS collides with an obstacle.
• BadNav - when the UAS navigates incorrectly (but the

pilot can intervene.) This category includes issues such
as position drift.

• FlyAway - when the pilot loses control of the UAS’s
behavior.

• Other - minor symptoms, ranging from incorrect log
messages appearing to LEDs not properly lighting.

Finding 4: Over 21% of UAS bugs are dangerous.

We call a bug dangerous if its symptoms include crashes
or flyaways. While incorrectly navigating or transient nav-
igation noise can be dangerous, in both cases a pilot can
intervene to prevent the situation from escalating further. But
in the cases of crashes and flyaways, the pilot is unable to
intervene to protect the vehicle and bystanders. For instance,
the bug described in Figure 3 is dangerous because the pilot
is unable to prevent a crash after a GPS loss. However, in
the case of the bug in Figure 2, the pilot can resume manual
control as the UAS navigates to the incorrect altitude.

Finding 5: 39% of dangerous bugs are caused by
mishandling sensors.

Sensor bugs are the dominant cause of unsafe conditions
in UAS. Firmware spends much time executing code that
reads and transforms sensor values. Misusing sensor values
(e.g. ignoring IMU saturation flags, using a value that is very
stale, etc) often leads to severe consequences. The firmware’s
perception of the vehicle’s state becomes warped, leading to
incorrect actuation. A single bad moment of actuation can
put the vehicle into a dangerous position that is difficult for
the firmware (or human pilot) to correct.

C. How reproducible are UAS firmware bugs?
By understanding how reproducible UAS firmware bugs

are, we can understand how likely users are to be affected
by these bugs. We identify three levels of reproduction. The
easiest bugs to reproduce do not require special hardware,
settings, or triggering conditions. Harder bugs to reproduce
require specific settings and triggering conditions. The hard-
est bugs to reproduce require specific hardware.

Finding 6: 74% of bugs are reproducible under default
settings, 20% are reproducible under modified settings,
and 6% are reproducible only on specific hardware or
have special timing conditions.

We find that the majority of bugs are easily reproducible.
This shows that simulation is a valuable tool for firmware
developers.

Finding 7: Nearly 70% of dangerous bugs are repro-
ducible under default settings with no special hardware
or timing conditions.

Dangerous bugs are usually easy to reproduce. This suggests
that thorough testing can help eliminate a significant portion
of dangerous bugs in UAS.

D. How do bugs affect each firmware subsystem?
We label each bug with the subsystem containing the bug.

Some bugs are caused by the interaction of several subsys-
tems. We ignore these complex bugs, i.e. they are unlabeled
in our data set. Other bugs are found in common libraries
shared between different subsystems. We also ignore these
bugs in this section. Interestingly, most bugs are contained
entirely in a single subsystem: only 29 bugs are excluded by
this filtering criteria. Our main findings are shown in Table
II.

The HAL and navigation subsystems contain the most
bugs. Nearly 10% of bugs in each subsystem involve in-
correct unit types or coordinate frames. This highlights the
challenge of providing consistent views of diverse hardware
types. We notice that the HAL is the only subsystem affected
by concurrency bugs. This is consistent with our discussion
on ArduPilot and PX4’s thread management policies. Most
I/O originates from the HAL, and I/O is performed by a
dedicated thread. Moreover, half of the memory bugs reside
in the HAL. Finally, bugs in the HAL are more likely to be
dangerous than the ones in other subsystems.

1443

Authorized licensed use limited to: The Ohio State University. Downloaded on March 27,2022 at 15:59:06 UTC from IEEE Xplore. Restrictions apply.

V. SIMULATING SENSOR BUGS

Our findings show that sensor bugs (1) are common
in UAS (finding 2), (2) are the leading cause of serious
symptoms in UAS (finding 5), and (3) are easy to reproduce.
This motivates us to understand sensor bugs further. This
section analyzes the triggering conditions of sensor bugs and
describes fault injection systems to trigger sensor bugs.

A. How are sensor bugs triggered?

First, we look at how sensor bugs are triggered. We
identify several common triggering conditions: Software-
Triggered, Measurement Errors, Failures, Healing, and In-
terrupt Storms. Our key finding is that over 75% of sensor
bugs are software-triggered or are triggered by total sensor
failures, and have weak timing constraints to trigger the bug.
Here, we explain each type of triggering condition.

Finding 8: Nearly 37% of sensor bugs affect vehicles
under all workloads.

1) Software-Triggered: Sensor bugs are sometimes trig-
gered by defects in control firmware. These bugs are trig-
gered by normal use of the UAS, e.g. merely turning on the
system triggers the bug. We find that 23 of the 63 sensor bugs
in our collection have this triggering condition. Fortunately,
only 4 of these bugs have dangerous consequences. Often,
these bugs render the UAS inoperable. 17 of these 23 bugs
can only be recreated on specific hardware because they
reside in drivers. These bugs are hard to detect because they
are hard to reproduce. Subtle programming errors can break
sensor drivers. There is no technology available to simulate
all the hardware used in the wild. These mistakes cannot be
caught until the firmware is tested on real hardware.

Finding 9: Around 2% of UAS bugs are triggered by
single measurement errors.

2) Measurement Errors: Some sensor bugs are triggered
if the sensor instance reports an erroneous measurement.
Our bug collection contains 6 sensor bugs triggered under
measurement errors. Of these errors, a single bitflip in the
sensor reading is enough to trigger 2 of these bugs. Recent
work (e.g. [12]) attempts to address this category of bugs in
autonomous vehicles.

Finding 10: Sensor failures are the dominant triggering
condition of sensor bugs, accounting for nearly 40% of
sensor bugs.

3) Failures: UAS firmware must correctly handle sensor
instances failing. Unfortunately, firmware does not always
handle these situations correctly. Of the 63 sensor bugs in our
collection, 25 are triggered by sensor failures. Only 6 sensor
bugs triggered by sensor failures need specific hardware to
reproduce. Sensor failures are both the dominant triggering
condition of sensor bugs and testable. It is worth noting that
sensor bugs triggered by sensor failures represent a larger
share of bugs in UAS than memory and concurrency bugs,
a dominant bug category in other software [15].

1 void batteryFailsafe() {
2 switch (lowBatteryAction) {
3 case LOW_BAT_ACTION::RETURN_OR_LAND:
4 if (!modeTransition(AUTO_RTL))
5 - warn("Can’t execute failsafe");
6 + forceDescend();
7 break;
8 ...
9 }

10 }

Fig. 4. PX4-13291: A dangerous bug with strong timing constraints.

To better understand this category, we look at the timing
constraints needed to trigger sensor bugs caused by failures.
We label each bug in this category as having weak, medium,
or strong timing constraints. We define each label as:

• Weak Timing Constraints - Sensor bugs triggered by a
failure at any time in any flight mode have weak timing
constraints. This is the most common timing constraint,
accounting for 16 of the 25 sensor bugs triggered by
sensor failures.

• Medium Timing Constraints - Sensor bugs that can only
be triggered by a single failure in a specific flight mode
have medium timing constraints. We find that this is the
third most common timing constraint, representing 4 of
the 25 bugs in this category.

• Strong Timing Constraints - Sensor bugs that can only
be triggered by a sequence of failures in specific flight
modes have strong timing constraints. We find that 5 of
the 25 sensor bugs share this constraint.

Finding 11: The majority (64%) of sensor bugs triggered
by sensor failures have weak timing constraints.

Figure 4 shows an example of a bug in PX4 with strong
timing constraints. To trigger this bug, the UAS first must
experience a GPS failure. This causes the firmware to lose its
position estimate. The firmware executes a user-configured
fail-safe when the position estimate is lost. While the fail-
safe executes, the battery becomes critically low. This causes
the firmware to invoke its battery fail-safe procedure (line 1
of the code listing.) The battery fail-safe attempts to execute a
return to launch or land (line 5.) However, since no position
estimate is available, the fail-safe execution fails. Instead,
the vehicle enters a loiter mode, cancelling the previous fail-
safe. Since the battery is at a critically low level, the UAS
quickly loses power and crashes. The fix is to force the
UAS to descend if it is unable to execute its battery fail-
safe (line 6.) The timing constraints are strong for this bug
because multiple sensors must fail in a specific sequence. If
the GPS does not fail soon before the battery fail-safe, then
the bug is not triggered.

4) Healing: Sometimes a failed sensor triggers a bug if
the sensor becomes healthy again. We say that these bugs are
triggered by sensor healing. We find that these bugs are rare,

1444

Authorized licensed use limited to: The Ohio State University. Downloaded on March 27,2022 at 15:59:06 UTC from IEEE Xplore. Restrictions apply.

only accounting for 3 of the 63 sensor bugs. Among these
3 bugs, only 1 exhibits serious symptoms. All sensor bugs
triggered by healed sensor instances are timing sensitive.
First, a sensor must fail, and then the sensor must recover
later.

5) Interrupt Storms: Broken sensor hardware can trigger
an interrupt storm where the hardware repeatedly triggers
interrupts. During an interrupt storm, CPU time becomes
dominated by interrupt handlers. This causes the firmware to
starve, which can lead to UAS crashes. We find that 5 of 63
sensor bugs are triggered by interrupt storms. The firmware
must ensure that interrupts are disabled during an interrupt
storm. Unfortunately, this also keeps well-behaved devices
that share a bus with the faulty hardware from communi-
cating with the CPU. Redundant sensor instances should
be placed on separate buses to increase UAS resilience to
interrupt storms.

B. Simulating Sensor Bugs

Fault Injection is a technique where software is exposed
to faults to determine if they are handled correctly. Testers
undertake a fault injection campaign where faults are sys-
tematically injected to identify software defects. A fault
injection campaign is driven by a fault injection engine that
repeatedly runs the software under test and injects faults. The
fault injection engine uses an oracle to judge the behavior
of the software under test. The oracle typically works by
monitoring a set of invariants that correct software must
preserve. Whenever the oracle determines the software has
misbehaved (e.g. an invariant is violated), the fault injection
engine generates a bug report containing the details necessary
to reproduce the scenario.

UAS firmware can be executed by a fault injection engine
using software-in-the-loop (SITL) simulation. In a SITL
simulation, the target firmware executes using a simulated
vehicle. Figure 5 shows an overview of SITL in a fault
injection framework. The HAL sends actuation commands
to the simulator. The simulator models the effects of the
actuation on the UAS’s state. The new state is sent to sensor
drivers in the HAL that simulate a sensor reading.

Sensor bugs triggered by complete sensor failures are good
candidates for identification via fault injection for two rea-
sons. First, developers struggle to identify these bugs in their
code, especially ones with strong timing constraints. How-
ever, they represent a significant challenge for developers, ac-
counting for nearly 40% of dangerous bugs. Second, this trig-
gering condition can be simulated effectively. Both ArduPilot
and PX4 support failing different sensor instances out of the
box. For instance, ArduPilot supports failing the GPS and
Barometer by configuring the “SIM GPS DISABLE” and
“SIM BARO DISABLE” parameters respectively. For sensor
types that do not have existing instrumentation to fail sensor
instances, we create our own using each firmware’s existing
HAL APIs. The existing simulation sensor drivers in the
HAL can communicate with a fault injection engine to fail
sensor readings on demand.

HAL

Simulator

Actuators

Unmodified Firmware

Sensors

Fault
Injection
Engine

Oracle

Fig. 5. Overview of fault injection setup.

There are two simple invariants that can detect dangerous
bugs:

1) Safety - the UAS does not collide with an obstacle.
2) Liveliness - the UAS executes the pilot’s commands, or

executes a failsafe.
Safety can easily be tested by checking the simulation for a
collision. Liveliness can be checked by comparing the UAS’s
physical state under a sensor failure and without a sensor
failure.

VI. TESTING FRAMEWORK FOR SENSOR BUGS

We reintroduced 5 previously reported sensor bugs in
ArduPilot and PX4 using Avis [24] in order to better
understand how sensor bugs affect UAS. We characterize
their manifestations based on setting modifications, affected
modes, sensors, time to symptom appearance, and additional
requirements needed to trigger the bug. Here, we describe the
bugs we reintroduced, discuss our reproduction methodology,
and share our experiences.

A. Reintroduced Bugs

The bugs we reintroduced were: APM-4455, APM-4757,
APM-5428, APM-9349, and PX4-13291. We selected these
bugs because they are (1) sensor bugs, (2) triggered by
sensor failures, and (3) share symptoms common with other
bugs. Here, we describe each bug. Note that APM-9349
and PX4-13291 are described in Sections IV-A.2 and V-A.3
respectively.

1) APM-4455: APM-4455 is triggered when the UAS
takes off into a GPS-aided flight mode, and then loses the
GPS for a long period of time. Pilots expect the firmware
to fallback to non GPS-aided position estimation. However,
the firmware incorrectly continued to use stale GPS mea-
surements. Over time, this bug caused position drift. This
bug was patched by introducing logic to change the EKF’s
aiding mode after the GPS has timed out.

2) APM-4757: Firmware divides EKFs into multiple
cores, each one using different sensor instances for redun-
dancy. When a core becomes unhealthy (e.g. due to a failed
sensor) the EKF switches its active core. Since different
instances of sensors can have different biases due to their
placement on the UAS, state estimates differ between EKF
cores. The navigation subsystem must (1) detect when an

1445

Authorized licensed use limited to: The Ohio State University. Downloaded on March 27,2022 at 15:59:06 UTC from IEEE Xplore. Restrictions apply.

TABLE III
SUMMARY OF EXPERIENCE REPRODUCING KNOWN BUGS USING FAULT INJECTION.

Bug ID Default Settings? Add. Modes? Add. Failures? Time until Detection Add. Requirements?
APM-4455 X 7 7 Long 7
APM-4757 X X X Short X
APM-5428 X X 7 Long 7
APM-9349 X X 7 Medium 7
PX4-13291 7 7 X Short 7

EKF core switches and (2) gracefully transition to using
the new state estimate. In APM-4757, the EKF incorrectly
reports the state innovation caused by EKF core switches.
This causes the navigation subsystem to over-zealously com-
mand actuation, leading to unsafe maneuvers. Developers
patched this bug by fixing the state estimation subsystem
to accurately report innovation when the active EKF core
switches.

3) APM-5428: UAS can safely operate without a GPS
if they are controlled manually by a pilot. If the pilot later
uploads an autopilot mission, firmware should refuse execu-
tion because it cannot estimate its absolute position without
GPS. In APM-5428, the firmware incorrectly transitioned
to autopilot when a mission was uploaded. This caused
the vehicle’s position to drift dangerously. This bug was
patched by including a check that the GPS is healthy before
a transition to a GPS-aided mode.

B. Methodology

To reintroduce each bug, we reverted the firmware back
to the affected version. We launched the UAS firmware in
SITL and executed a workload. Following the reproduction
guidance in the issue report, we manually instructed a fault
injector to fail the sensor instances needed to trigger the bug.
We confirmed that each bug was detected using a simple
oracle monitoring the invariants described in Section V-B.
The remainder of this section describes each runtime feature
we examined.

1) Settings: We checked if each bug affects additional
flight modes beyond those listed in the incident report. To
accomplish this, we ran several workloads using different
manual and autopilot modes. We followed the same steps
to reproduce the bug as described in the original incident
report.

2) Additional Failures Triggers: Sometimes, the same bug
can be triggered by failing sensors other than those listed in
issues. We checked which of the bugs we reintroduced have
this trait. We attempted to trigger each bug using sensor types
other than the ones listed in the initial incident report.

3) Time Until Symptom Detection: We also examined how
much time was needed for symptoms to be detected by
the oracle after triggering each bug. We classify the time
to symptom appearance as one of Short, Medium, or Long.
Symptoms that appear shortly after the triggering condition
take less than 3 seconds to manifest. We describe a medium
time to appear as 3-9 seconds. A long manifestation time is
≥ 10 seconds.

4) Additional Triggering Requirements: Finally, we
looked at what additional requirements are necessary to
trigger each bug. Additional requirements refer to conditions
beyond those explicitly stated in the incident report.

C. Results

Table III summarizes our experience reproducing existing
bugs using fault injection. We find that default settings are
sufficient to reproduce most bugs.

We were able to trigger 2 sensor bugs using sensors other
than those described in the initial incident report. APM-4757
was initially triggered with a single compass failure. We were
able to trigger this bug by failing a single IMU instance
on the same EKF core. This caused an EKF core switch
with the same symptoms as the original bug report. PX4-
13291 could also be triggered with a compass loss. This
caused the firmware to lose its local position estimate. Then,
we triggered the battery failsafe. Without a local position
estimate, the firmware failed to execute a failsafe. We verified
that the patch for both bugs corrected the bug for other sensor
types.

APM-4757 had additional conditions necessary for the
bug to be triggered. Specifically, the EKF switch-over must
introduce enough novelty to cause a position jump. However,
we find that this condition can be met by waiting until late
in the workload execution to trigger the bug. This works
because the estimation errors due to sensor noise become
worse over time. We also find that we can manipulate the
readings from secondary sensor instances to cause the jump
during EKF switch-over to destabilize the UAS and cause a
crash. The merged bug patch prevents this behavior.

We found that several bugs could be triggered in modes not
mentioned in their incident reports. For instance, APM-5428
can be triggered in any GPS-aided mode. The 2 bugs that
did not fulfill this criteria used broad language to describe
affected modes. We observe that if a mode has a sensor
dependency on S then it will be affected by bugs triggered
by S’s failure.

Finally, we see that the time to manifest symptoms varies
from bug to bug. However, for each bug, the time to mani-
festation was independent of the type of sensor failure that
triggered the bug and the workload. Time to manifestation
mostly depends on the type of symptom. For instance, APM-
5428 manifests as position drift. It takes several seconds for
the position to drift enough to be considered abnormal.

1446

Authorized licensed use limited to: The Ohio State University. Downloaded on March 27,2022 at 15:59:06 UTC from IEEE Xplore. Restrictions apply.

D. Threats to Validity

Bug studies can present validity concerns [16], [27].
Potential threats to validity include our choice of firmware
platforms, the bugs reported in the study and bias in our
methodology.

We selected ArduPilot and PX4 because of their popu-
larity, the size of their code bases, and their accessibility
as open source projects. We believe they capture a wide
range of features in UAS control firmware, but we also ac-
knowledge that proprietary platforms (e.g., the DJI software
development stack [7]) may differ substantially. Also, cutting
edge platforms designed for emerging applications, e.g.,
SoftwarePilot [5] and AeroStack [21], may exhibit different
patterns in future bug studies.

We strove to study a comprehensive sample of bugs
across these platforms. We searched code repositories for
key words related to patches, such as bug, problem, fix, etc.
Our study excluded bugs that were not returned by our search
criteria. We also manually analyzed each patch and developer
comments to extract root causes, symptoms and other aspects
of the bugs. We will release a spreadsheet with our selected
bugs and their associated features. This allows researchers
to replicate our results. Also, it reduces the burden on our
methodology which focused on simple statistical measures.
Researchers can explore more complex analysis, e.g., NOVA
tests, to extract additional findings.

Overall, we do not believe our results should be ex-
trapolated to all UAS control firmware platforms forever.
However, we do believe our results capture the characteristics
and runtime dynamics of bugs in modern, open-source, and
widely used control firmware. Importantly, we report results
that have intuitive explanations based on the function of
UAS, providing confidence in the findings of our study.

VII. DISCUSSION

Our bug study has implications for developers working
on control firmware, researchers studying reliability and
fault tolerance, and UAS users. For developers, our bug
study can inform software engineering. For example, code
base commits to sensor drivers should undergo rigorous
unit tests, because mistakes are likely to cause crashes and
other severe symptoms. Control firmware can construct unit
tests based on simulation in realistic environments to test
for bugs that produce symptoms only during flight. While
simulations test some conditions that are not encountered in
practice, our study shows that simulation can expand our
understanding of bug symptoms. Finally, large code bases
should clearly document the input, output, invariants and
behavior of software components, reducing the frequency of
semantic bugs where developers mix up supported features.

For researchers, the prevalence and impact of bugs in
UAS control firmware present many opportunities. In-situ
model checking uses simulation and/or real experiments to
test execution invariants and has been used successfully to
diagnose bugs in SSDs and filesystems caused by power
outages [26], [13]. Custom static analysis processes (e.g.

those in [9], [8]) have the potential to detect unit conversion
bugs and incorrectly handled MAVLink messages.

Finally, our approach also impacts end users that may
configure UAS under default settings not realizing that such
settings could be triggering conditions in their environment.
Using Rx approaches [20], [23], users can configure UAS
to avoid these triggering conditions extending the lifetime of
aircraft.

VIII. CONCLUSION

Reliability is paramount for UAS, especially as their use
cases grow to include dangerous, remote, and sensitive mis-
sions. Bugs in UAS firmware can endanger nearby humans
and jeopardize critical missions. However, how bugs affect
UAS is not well understood. Engineering communities need
data to build dependable UAS firmware. This paper examines
277 bugs affecting the ArduPilot and PX4 UAS firmware
between 2016-2020. To the best of our knowledge, this is
the first large-scale study of bugs in UAS firmware. We find
that (1) UAS bugs often have severe consequences - 25%
of bugs lead to vehicle crashes or other dangerous behaviors.
(2) Dangerous bugs are likely to impact users - 80%
do not have any special triggering conditions. (3) Bugs in
components handling sensor data contribute the most to
dangerous behavior, representing 30% of dangerous bugs.
However, we find that (4) there is a light at the end of
the tunnel: 43% of bugs can be reproduced in simulations,
opening the door for automated bug-hunting techniques.

REFERENCES

[1] Under the hood of ardupilot: Software quality and improvements.
https://desosa.nl/projects/ardupilot/2020/
03/26/under-the-hood-of-ardupilot-software-
quality-and-improvements, 2020.

[2] ArduPilot. ArduPilot: Versatile, Trusted, Open. https://
ardupilot.org, 2020. Accessed: 2020-05-23.

[3] Auterion. Auterion Enables Impossible Aerospace to Launch New
US-1 Drone. https://auterion.com/auterion-enables-
impossible_aerospace-to-launch-us-1-drone/, 2021.
Accessed: 2021-02-26.

[4] Brendan Barry, Cormac Brick, Fergal Connor, David Donohoe, David
Moloney, Richard Richmond, Martin O’Riordan, and Vasile Toma.
Always-on vision processing unit for mobile applications. IEEE Micro,
35(2), 2015.

[5] Jayson G Boubin, Naveen TR Babu, Christopher Stewart, John Chum-
ley, and Shiqi Zhang. Managing edge resources for fully autonomous
aerial systems. In Proceedings of the 4th ACM/IEEE Symposium on
Edge Computing, pages 74–87, 2019.

[6] H. Chen, W. Dou, Y. Jiang, and F. Qin. Understanding exception-
related bugs in large-scale cloud systems. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pages 339–351, 2019.

[7] DJI. DJI Developer. https://developer.dji.com, 2021.
Accessed: 2021-02-26.

[8] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem.
Checking system rules using system-specific, programmer-written
compiler extensions. In Proceedings of the 4th Conference on
Symposium on Operating System Design & Implementation - Volume
4, OSDI’00, USA, 2000. USENIX Association.

[9] Dawson R. Engler. Incorporating application semantics and control
into compilation. In Conference on Domain-Specific Languages (DSL
97), Santa Barbara, CA, October 1997. USENIX Association.

[10] Joshua Garcia, Yang Feng, Junjie Shen, Sumaya Almanee, Yuan Xia,
and Alfred Qi. A comprehensive study of autonomous vehicle bugs.
In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, pages 385–396, 2020.

1447

Authorized licensed use limited to: The Ohio State University. Downloaded on March 27,2022 at 15:59:06 UTC from IEEE Xplore. Restrictions apply.

[11] Hu Huang, Samuel Z Guyer, and Jason H Rife. Detecting semantic
bugs in autopilot software by classifying anomalous variables. Journal
of Aerospace Information Systems, 17(4):204–213, 2020.

[12] S. Jha, S. Banerjee, T. Tsai, S. K. S. Hari, M. B. Sullivan, Z. T.
Kalbarczyk, S. W. Keckler, and R. K. Iyer. Ml-based fault injection for
autonomous vehicles: A case for bayesian fault injection. In 2019 49th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pages 112–124, 2019.

[13] Yanyan Jiang, Haicheng Chen, Feng Qin, Chang Xu, Xiaoxing Ma,
and Jian Lu. Crash consistency validation made easy. In Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, FSE 2016, page 133–143, New York,
NY, USA, 2016. Association for Computing Machinery.

[14] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan
Lu. Understanding and detecting real-world performance bugs. ACM
SIGPLAN Notices, 47(6):77–88, 2012.

[15] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and
Chengxiang Zhai. Have things changed now?: An empirical study
of bug characteristics in modern open source software. In ASID’06,
ASID’06: 1st Workshop on Architectural and System Support for
Improving Software Dependability, pages 25–33, December 2006.
ASID’06: 1st Workshop on Architectural and System Support for
Improving Software Dependability ; Conference date: 21-10-2006
Through 21-10-2006.

[16] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning
from mistakes: a comprehensive study on real world concurrency bug
characteristics. In Proceedings of the 13th international conference
on Architectural support for programming languages and operating
systems, pages 329–339, 2008.

[17] MAVLink. MAVLink Developer Guide. https://mavlink.io/
en/, 2020. Accessed: 2021-02-26.

[18] Nicholas Nethercote and Julian Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. In ACM Conference on
Programming Language Design and Implementation, pages 89–100,
2007.

[19] PX4. PX4 Autopilot: Open Souce Autopilot for Drones. https:
//px4.io, 2020. Accessed: 2020-05-23.

[20] Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and Yuanyuan Zhou.
Rx: Treating bugs as allergies—a safe method to survive software fail-
ures. In Proceedings of the Twentieth ACM Symposium on Operating
Systems Principles, SOSP ’05, page 235–248, New York, NY, USA,
2005. Association for Computing Machinery.

[21] Jose Luis Sanchez-Lopez, Ramón A Suárez Fernández, Hriday Bavle,
Carlos Sampedro, Martin Molina, Jesus Pestana, and Pascual Campoy.
Aerostack: An architecture and open-source software framework for
aerial robotics. In International Conference on Unmanned Aircraft
Systems, 2016.

[22] Jose Luis Sanchez-Lopez, Martin Molina, Hriday Bavle, Carlos
Sampedro, Ramón A Suárez Fernández, and Pascual Campoy. A
multi-layered component-based approach for the development of aerial
robotic systems: the aerostack framework. Journal of Intelligent &
Robotic Systems, 88, 2017.

[23] Christopher Stewart, Kai Shen, Arun Iyengar, and Jian Yin. Entomo-
model: Understanding and avoiding performance anomaly manifesta-
tions (winner of best paper award). In IEEE Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems,
2010.

[24] Max Taylor, Haicheng Chen, Feng Qin, and Christopher Stewart. Avis:
In-Situ Model Checking for Unmanned Aerial Vehicles. In The 51st
annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), 2021.

[25] Christopher Steven Timperley, Afsoon Afzal, Deborah S Katz,
Jam Marcos Hernandez, and Claire Le Goues. Crashing simulated
planes is cheap: Can simulation detect robotics bugs early? In 2018
IEEE 11th International Conference on Software Testing, Verification
and Validation (ICST), pages 331–342. IEEE, 2018.

[26] Mai Zheng, Joseph Tucek, Dachuan Huang, Feng Qin, Mark Lillib-
ridge, Elizabeth S. Yang, Bill W. Zhao, and Shashank Singh. Torturing
databases for fun and profit. In Proceedings of the 11th USENIX Con-
ference on Operating Systems Design and Implementation, OSDI’14,
page 449–464, USA, 2014. USENIX Association.

[27] Hao Zhong and Zhendong Su. An empirical study on real bug fixes.
In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, volume 1, pages 913–923, 2015.

1448

Authorized licensed use limited to: The Ohio State University. Downloaded on March 27,2022 at 15:59:06 UTC from IEEE Xplore. Restrictions apply.

